Metamath Proof Explorer


Theorem unitinvinv

Description: The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1 U = Unit R
unitinvcl.2 I = inv r R
Assertion unitinvinv R Ring X U I I X = X

Proof

Step Hyp Ref Expression
1 unitinvcl.1 U = Unit R
2 unitinvcl.2 I = inv r R
3 eqid mulGrp R 𝑠 U = mulGrp R 𝑠 U
4 1 3 unitgrp R Ring mulGrp R 𝑠 U Grp
5 1 3 unitgrpbas U = Base mulGrp R 𝑠 U
6 1 3 2 invrfval I = inv g mulGrp R 𝑠 U
7 5 6 grpinvinv mulGrp R 𝑠 U Grp X U I I X = X
8 4 7 sylan R Ring X U I I X = X