Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulcl.1 |
|
2 |
|
unitmulcl.2 |
|
3 |
|
simp1 |
|
4 |
|
simp3 |
|
5 |
|
eqid |
|
6 |
5 1
|
unitcl |
|
7 |
4 6
|
syl |
|
8 |
|
simp2 |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 9 10 11 12
|
isunit |
|
14 |
8 13
|
sylib |
|
15 |
14
|
simpld |
|
16 |
5 10 2
|
dvdsrmul1 |
|
17 |
3 7 15 16
|
syl3anc |
|
18 |
5 2 9
|
ringlidm |
|
19 |
3 7 18
|
syl2anc |
|
20 |
17 19
|
breqtrd |
|
21 |
1 9 10 11 12
|
isunit |
|
22 |
4 21
|
sylib |
|
23 |
22
|
simpld |
|
24 |
5 10
|
dvdsrtr |
|
25 |
3 20 23 24
|
syl3anc |
|
26 |
11
|
opprring |
|
27 |
3 26
|
syl |
|
28 |
|
eqid |
|
29 |
5 2 11 28
|
opprmul |
|
30 |
5 1
|
unitcl |
|
31 |
8 30
|
syl |
|
32 |
22
|
simprd |
|
33 |
11 5
|
opprbas |
|
34 |
33 12 28
|
dvdsrmul1 |
|
35 |
27 31 32 34
|
syl3anc |
|
36 |
5 2 11 28
|
opprmul |
|
37 |
5 2 9
|
ringridm |
|
38 |
3 31 37
|
syl2anc |
|
39 |
36 38
|
eqtrid |
|
40 |
35 39
|
breqtrd |
|
41 |
29 40
|
eqbrtrrid |
|
42 |
14
|
simprd |
|
43 |
33 12
|
dvdsrtr |
|
44 |
27 41 42 43
|
syl3anc |
|
45 |
1 9 10 11 12
|
isunit |
|
46 |
25 44 45
|
sylanbrc |
|