Metamath Proof Explorer


Theorem unitnegcl

Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses unitnegcl.1 U = Unit R
unitnegcl.2 N = inv g R
Assertion unitnegcl R Ring X U N X U

Proof

Step Hyp Ref Expression
1 unitnegcl.1 U = Unit R
2 unitnegcl.2 N = inv g R
3 simpl R Ring X U R Ring
4 ringgrp R Ring R Grp
5 eqid Base R = Base R
6 5 1 unitcl X U X Base R
7 5 2 grpinvcl R Grp X Base R N X Base R
8 4 6 7 syl2an R Ring X U N X Base R
9 eqid r R = r R
10 5 9 2 dvdsrneg R Ring N X Base R N X r R N N X
11 8 10 syldan R Ring X U N X r R N N X
12 5 2 grpinvinv R Grp X Base R N N X = X
13 4 6 12 syl2an R Ring X U N N X = X
14 11 13 breqtrd R Ring X U N X r R X
15 simpr R Ring X U X U
16 eqid 1 R = 1 R
17 eqid opp r R = opp r R
18 eqid r opp r R = r opp r R
19 1 16 9 17 18 isunit X U X r R 1 R X r opp r R 1 R
20 15 19 sylib R Ring X U X r R 1 R X r opp r R 1 R
21 20 simpld R Ring X U X r R 1 R
22 5 9 dvdsrtr R Ring N X r R X X r R 1 R N X r R 1 R
23 3 14 21 22 syl3anc R Ring X U N X r R 1 R
24 17 opprring R Ring opp r R Ring
25 24 adantr R Ring X U opp r R Ring
26 17 5 opprbas Base R = Base opp r R
27 17 2 opprneg N = inv g opp r R
28 26 18 27 dvdsrneg opp r R Ring N X Base R N X r opp r R N N X
29 25 8 28 syl2anc R Ring X U N X r opp r R N N X
30 29 13 breqtrd R Ring X U N X r opp r R X
31 20 simprd R Ring X U X r opp r R 1 R
32 26 18 dvdsrtr opp r R Ring N X r opp r R X X r opp r R 1 R N X r opp r R 1 R
33 25 30 31 32 syl3anc R Ring X U N X r opp r R 1 R
34 1 16 9 17 18 isunit N X U N X r R 1 R N X r opp r R 1 R
35 23 33 34 sylanbrc R Ring X U N X U