Metamath Proof Explorer


Theorem unitnz

Description: In a nonzero ring, a unit cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2025)

Ref Expression
Hypotheses unitnz.1 U = Unit R
unitnz.2 0 ˙ = 0 R
unitnz.3 φ R NzRing
unitnz.4 φ X U
Assertion unitnz φ X 0 ˙

Proof

Step Hyp Ref Expression
1 unitnz.1 U = Unit R
2 unitnz.2 0 ˙ = 0 R
3 unitnz.3 φ R NzRing
4 unitnz.4 φ X U
5 nzrring R NzRing R Ring
6 3 5 syl φ R Ring
7 eqid 1 R = 1 R
8 7 2 nzrnz R NzRing 1 R 0 ˙
9 3 8 syl φ 1 R 0 ˙
10 1 2 7 0unit R Ring 0 ˙ U 1 R = 0 ˙
11 10 necon3bbid R Ring ¬ 0 ˙ U 1 R 0 ˙
12 11 biimpar R Ring 1 R 0 ˙ ¬ 0 ˙ U
13 6 9 12 syl2anc φ ¬ 0 ˙ U
14 nelne2 X U ¬ 0 ˙ U X 0 ˙
15 4 13 14 syl2anc φ X 0 ˙