Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Rings - misc additions
unitnz
Next ⟩
The zero ring
Metamath Proof Explorer
Ascii
Unicode
Theorem
unitnz
Description:
In a nonzero ring, a unit cannot be zero.
(Contributed by
Thierry Arnoux
, 25-Apr-2025)
Ref
Expression
Hypotheses
unitnz.1
⊢
U
=
Unit
⁡
R
unitnz.2
⊢
0
˙
=
0
R
unitnz.3
⊢
φ
→
R
∈
NzRing
unitnz.4
⊢
φ
→
X
∈
U
Assertion
unitnz
⊢
φ
→
X
≠
0
˙
Proof
Step
Hyp
Ref
Expression
1
unitnz.1
⊢
U
=
Unit
⁡
R
2
unitnz.2
⊢
0
˙
=
0
R
3
unitnz.3
⊢
φ
→
R
∈
NzRing
4
unitnz.4
⊢
φ
→
X
∈
U
5
nzrring
⊢
R
∈
NzRing
→
R
∈
Ring
6
3
5
syl
⊢
φ
→
R
∈
Ring
7
eqid
⊢
1
R
=
1
R
8
7
2
nzrnz
⊢
R
∈
NzRing
→
1
R
≠
0
˙
9
3
8
syl
⊢
φ
→
1
R
≠
0
˙
10
1
2
7
0unit
⊢
R
∈
Ring
→
0
˙
∈
U
↔
1
R
=
0
˙
11
10
necon3bbid
⊢
R
∈
Ring
→
¬
0
˙
∈
U
↔
1
R
≠
0
˙
12
11
biimpar
⊢
R
∈
Ring
∧
1
R
≠
0
˙
→
¬
0
˙
∈
U
13
6
9
12
syl2anc
⊢
φ
→
¬
0
˙
∈
U
14
nelne2
⊢
X
∈
U
∧
¬
0
˙
∈
U
→
X
≠
0
˙
15
4
13
14
syl2anc
⊢
φ
→
X
≠
0
˙