Metamath Proof Explorer


Theorem unitpidl1

Description: The ideal I generated by an element X of an integral domain R is the unit ideal B iff X is a ring unit. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses unitpidl1.1 U = Unit R
unitpidl1.2 K = RSpan R
unitpidl1.3 I = K X
unitpidl1.4 B = Base R
unitpidl1.5 φ X B
unitpidl1.6 φ R IDomn
Assertion unitpidl1 φ I = B X U

Proof

Step Hyp Ref Expression
1 unitpidl1.1 U = Unit R
2 unitpidl1.2 K = RSpan R
3 unitpidl1.3 I = K X
4 unitpidl1.4 B = Base R
5 unitpidl1.5 φ X B
6 unitpidl1.6 φ R IDomn
7 df-idom IDomn = CRing Domn
8 6 7 eleqtrdi φ R CRing Domn
9 8 elin1d φ R CRing
10 9 ad3antrrr φ I = B y B 1 R = y R X R CRing
11 simplr φ I = B y B 1 R = y R X y B
12 5 ad3antrrr φ I = B y B 1 R = y R X X B
13 simpr φ I = B y B 1 R = y R X 1 R = y R X
14 6 idomringd φ R Ring
15 eqid 1 R = 1 R
16 1 15 1unit R Ring 1 R U
17 14 16 syl φ 1 R U
18 17 ad3antrrr φ I = B y B 1 R = y R X 1 R U
19 13 18 eqeltrrd φ I = B y B 1 R = y R X y R X U
20 eqid R = R
21 1 20 4 unitmulclb R CRing y B X B y R X U y U X U
22 21 simplbda R CRing y B X B y R X U X U
23 10 11 12 19 22 syl31anc φ I = B y B 1 R = y R X X U
24 14 adantr φ I = B R Ring
25 5 adantr φ I = B X B
26 5 snssd φ X B
27 eqid LIdeal R = LIdeal R
28 2 4 27 rspcl R Ring X B K X LIdeal R
29 14 26 28 syl2anc φ K X LIdeal R
30 3 29 eqeltrid φ I LIdeal R
31 30 adantr φ I = B I LIdeal R
32 simpr φ I = B I = B
33 27 4 15 lidl1el R Ring I LIdeal R 1 R I I = B
34 33 biimpar R Ring I LIdeal R I = B 1 R I
35 24 31 32 34 syl21anc φ I = B 1 R I
36 35 3 eleqtrdi φ I = B 1 R K X
37 4 20 2 rspsnel R Ring X B 1 R K X y B 1 R = y R X
38 37 biimpa R Ring X B 1 R K X y B 1 R = y R X
39 24 25 36 38 syl21anc φ I = B y B 1 R = y R X
40 23 39 r19.29a φ I = B X U
41 simpr φ X U X U
42 2 4 rspssid R Ring X B X K X
43 14 26 42 syl2anc φ X K X
44 43 3 sseqtrrdi φ X I
45 snssg X B X I X I
46 45 biimpar X B X I X I
47 5 44 46 syl2anc φ X I
48 47 adantr φ X U X I
49 14 adantr φ X U R Ring
50 30 adantr φ X U I LIdeal R
51 4 1 41 48 49 50 lidlunitel φ X U I = B
52 40 51 impbida φ I = B X U