Step |
Hyp |
Ref |
Expression |
1 |
|
unitpidl1.1 |
|
2 |
|
unitpidl1.2 |
|
3 |
|
unitpidl1.3 |
|
4 |
|
unitpidl1.4 |
|
5 |
|
unitpidl1.5 |
|
6 |
|
unitpidl1.6 |
|
7 |
|
df-idom |
|
8 |
6 7
|
eleqtrdi |
|
9 |
8
|
elin1d |
|
10 |
9
|
ad3antrrr |
|
11 |
|
simplr |
|
12 |
5
|
ad3antrrr |
|
13 |
|
simpr |
|
14 |
6
|
idomringd |
|
15 |
|
eqid |
|
16 |
1 15
|
1unit |
|
17 |
14 16
|
syl |
|
18 |
17
|
ad3antrrr |
|
19 |
13 18
|
eqeltrrd |
|
20 |
|
eqid |
|
21 |
1 20 4
|
unitmulclb |
|
22 |
21
|
simplbda |
|
23 |
10 11 12 19 22
|
syl31anc |
|
24 |
14
|
adantr |
|
25 |
5
|
adantr |
|
26 |
5
|
snssd |
|
27 |
|
eqid |
|
28 |
2 4 27
|
rspcl |
|
29 |
14 26 28
|
syl2anc |
|
30 |
3 29
|
eqeltrid |
|
31 |
30
|
adantr |
|
32 |
|
simpr |
|
33 |
27 4 15
|
lidl1el |
|
34 |
33
|
biimpar |
|
35 |
24 31 32 34
|
syl21anc |
|
36 |
35 3
|
eleqtrdi |
|
37 |
4 20 2
|
rspsnel |
|
38 |
37
|
biimpa |
|
39 |
24 25 36 38
|
syl21anc |
|
40 |
23 39
|
r19.29a |
|
41 |
|
simpr |
|
42 |
2 4
|
rspssid |
|
43 |
14 26 42
|
syl2anc |
|
44 |
43 3
|
sseqtrrdi |
|
45 |
|
snssg |
|
46 |
45
|
biimpar |
|
47 |
5 44 46
|
syl2anc |
|
48 |
47
|
adantr |
|
49 |
14
|
adantr |
|
50 |
30
|
adantr |
|
51 |
4 1 41 48 49 50
|
lidlunitel |
|
52 |
40 51
|
impbida |
|