Metamath Proof Explorer


Theorem unitpropd

Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses rngidpropd.1 φB=BaseK
rngidpropd.2 φB=BaseL
rngidpropd.3 φxByBxKy=xLy
Assertion unitpropd φUnitK=UnitL

Proof

Step Hyp Ref Expression
1 rngidpropd.1 φB=BaseK
2 rngidpropd.2 φB=BaseL
3 rngidpropd.3 φxByBxKy=xLy
4 1 2 3 rngidpropd φ1K=1L
5 4 breq2d φzrK1KzrK1L
6 4 breq2d φzropprK1KzropprK1L
7 5 6 anbi12d φzrK1KzropprK1KzrK1LzropprK1L
8 1 2 3 dvdsrpropd φrK=rL
9 8 breqd φzrK1LzrL1L
10 eqid opprK=opprK
11 eqid BaseK=BaseK
12 10 11 opprbas BaseK=BaseopprK
13 1 12 eqtrdi φB=BaseopprK
14 eqid opprL=opprL
15 eqid BaseL=BaseL
16 14 15 opprbas BaseL=BaseopprL
17 2 16 eqtrdi φB=BaseopprL
18 3 ancom2s φyBxBxKy=xLy
19 eqid K=K
20 eqid opprK=opprK
21 11 19 10 20 opprmul yopprKx=xKy
22 eqid L=L
23 eqid opprL=opprL
24 15 22 14 23 opprmul yopprLx=xLy
25 18 21 24 3eqtr4g φyBxByopprKx=yopprLx
26 13 17 25 dvdsrpropd φropprK=ropprL
27 26 breqd φzropprK1LzropprL1L
28 9 27 anbi12d φzrK1LzropprK1LzrL1LzropprL1L
29 7 28 bitrd φzrK1KzropprK1KzrL1LzropprL1L
30 eqid UnitK=UnitK
31 eqid 1K=1K
32 eqid rK=rK
33 eqid ropprK=ropprK
34 30 31 32 10 33 isunit zUnitKzrK1KzropprK1K
35 eqid UnitL=UnitL
36 eqid 1L=1L
37 eqid rL=rL
38 eqid ropprL=ropprL
39 35 36 37 14 38 isunit zUnitLzrL1LzropprL1L
40 29 34 39 3bitr4g φzUnitKzUnitL
41 40 eqrdv φUnitK=UnitL