Metamath Proof Explorer


Theorem unitreslOLD

Description: Obsolete version of olcnd as of 13-Apr-2024. (Contributed by Giovanni Mascellani, 15-Sep-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses olcnd.1 φ ψ χ
olcnd.2 φ ¬ χ
Assertion unitreslOLD φ ψ

Proof

Step Hyp Ref Expression
1 olcnd.1 φ ψ χ
2 olcnd.2 φ ¬ χ
3 orcom ψ χ χ ψ
4 df-or χ ψ ¬ χ ψ
5 3 4 sylbb ψ χ ¬ χ ψ
6 1 2 5 sylc φ ψ