Step |
Hyp |
Ref |
Expression |
1 |
|
unitrrg.e |
|
2 |
|
unitrrg.u |
|
3 |
|
eqid |
|
4 |
3 2
|
unitcl |
|
5 |
4
|
adantl |
|
6 |
|
oveq2 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
2 7 8 9
|
unitlinv |
|
11 |
10
|
adantr |
|
12 |
11
|
oveq1d |
|
13 |
|
simpll |
|
14 |
2 7 3
|
ringinvcl |
|
15 |
14
|
adantr |
|
16 |
5
|
adantr |
|
17 |
|
simpr |
|
18 |
3 8
|
ringass |
|
19 |
13 15 16 17 18
|
syl13anc |
|
20 |
3 8 9
|
ringlidm |
|
21 |
20
|
adantlr |
|
22 |
12 19 21
|
3eqtr3d |
|
23 |
|
eqid |
|
24 |
3 8 23
|
ringrz |
|
25 |
13 15 24
|
syl2anc |
|
26 |
22 25
|
eqeq12d |
|
27 |
6 26
|
syl5ib |
|
28 |
27
|
ralrimiva |
|
29 |
1 3 8 23
|
isrrg |
|
30 |
5 28 29
|
sylanbrc |
|
31 |
30
|
ex |
|
32 |
31
|
ssrdv |
|