Metamath Proof Explorer


Theorem unitrrg

Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses unitrrg.e E = RLReg R
unitrrg.u U = Unit R
Assertion unitrrg R Ring U E

Proof

Step Hyp Ref Expression
1 unitrrg.e E = RLReg R
2 unitrrg.u U = Unit R
3 eqid Base R = Base R
4 3 2 unitcl x U x Base R
5 4 adantl R Ring x U x Base R
6 oveq2 x R y = 0 R inv r R x R x R y = inv r R x R 0 R
7 eqid inv r R = inv r R
8 eqid R = R
9 eqid 1 R = 1 R
10 2 7 8 9 unitlinv R Ring x U inv r R x R x = 1 R
11 10 adantr R Ring x U y Base R inv r R x R x = 1 R
12 11 oveq1d R Ring x U y Base R inv r R x R x R y = 1 R R y
13 simpll R Ring x U y Base R R Ring
14 2 7 3 ringinvcl R Ring x U inv r R x Base R
15 14 adantr R Ring x U y Base R inv r R x Base R
16 5 adantr R Ring x U y Base R x Base R
17 simpr R Ring x U y Base R y Base R
18 3 8 ringass R Ring inv r R x Base R x Base R y Base R inv r R x R x R y = inv r R x R x R y
19 13 15 16 17 18 syl13anc R Ring x U y Base R inv r R x R x R y = inv r R x R x R y
20 3 8 9 ringlidm R Ring y Base R 1 R R y = y
21 20 adantlr R Ring x U y Base R 1 R R y = y
22 12 19 21 3eqtr3d R Ring x U y Base R inv r R x R x R y = y
23 eqid 0 R = 0 R
24 3 8 23 ringrz R Ring inv r R x Base R inv r R x R 0 R = 0 R
25 13 15 24 syl2anc R Ring x U y Base R inv r R x R 0 R = 0 R
26 22 25 eqeq12d R Ring x U y Base R inv r R x R x R y = inv r R x R 0 R y = 0 R
27 6 26 syl5ib R Ring x U y Base R x R y = 0 R y = 0 R
28 27 ralrimiva R Ring x U y Base R x R y = 0 R y = 0 R
29 1 3 8 23 isrrg x E x Base R y Base R x R y = 0 R y = 0 R
30 5 28 29 sylanbrc R Ring x U x E
31 30 ex R Ring x U x E
32 31 ssrdv R Ring U E