Metamath Proof Explorer


Theorem uniwf

Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion uniwf A R1 On A R1 On

Proof

Step Hyp Ref Expression
1 r1tr Tr R1 suc rank A
2 rankidb A R1 On A R1 suc rank A
3 trss Tr R1 suc rank A A R1 suc rank A A R1 suc rank A
4 1 2 3 mpsyl A R1 On A R1 suc rank A
5 rankdmr1 rank A dom R1
6 r1sucg rank A dom R1 R1 suc rank A = 𝒫 R1 rank A
7 5 6 ax-mp R1 suc rank A = 𝒫 R1 rank A
8 4 7 sseqtrdi A R1 On A 𝒫 R1 rank A
9 sspwuni A 𝒫 R1 rank A A R1 rank A
10 8 9 sylib A R1 On A R1 rank A
11 fvex R1 rank A V
12 11 elpw2 A 𝒫 R1 rank A A R1 rank A
13 10 12 sylibr A R1 On A 𝒫 R1 rank A
14 13 7 eleqtrrdi A R1 On A R1 suc rank A
15 r1elwf A R1 suc rank A A R1 On
16 14 15 syl A R1 On A R1 On
17 pwwf A R1 On 𝒫 A R1 On
18 pwuni A 𝒫 A
19 sswf 𝒫 A R1 On A 𝒫 A A R1 On
20 18 19 mpan2 𝒫 A R1 On A R1 On
21 17 20 sylbi A R1 On A R1 On
22 16 21 impbii A R1 On A R1 On