Metamath Proof Explorer


Theorem uniwf

Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion uniwf AR1OnAR1On

Proof

Step Hyp Ref Expression
1 r1tr TrR1sucrankA
2 rankidb AR1OnAR1sucrankA
3 trss TrR1sucrankAAR1sucrankAAR1sucrankA
4 1 2 3 mpsyl AR1OnAR1sucrankA
5 rankdmr1 rankAdomR1
6 r1sucg rankAdomR1R1sucrankA=𝒫R1rankA
7 5 6 ax-mp R1sucrankA=𝒫R1rankA
8 4 7 sseqtrdi AR1OnA𝒫R1rankA
9 sspwuni A𝒫R1rankAAR1rankA
10 8 9 sylib AR1OnAR1rankA
11 fvex R1rankAV
12 11 elpw2 A𝒫R1rankAAR1rankA
13 10 12 sylibr AR1OnA𝒫R1rankA
14 13 7 eleqtrrdi AR1OnAR1sucrankA
15 r1elwf AR1sucrankAAR1On
16 14 15 syl AR1OnAR1On
17 pwwf AR1On𝒫AR1On
18 pwuni A𝒫A
19 sswf 𝒫AR1OnA𝒫AAR1On
20 18 19 mpan2 𝒫AR1OnAR1On
21 17 20 sylbi AR1OnAR1On
22 16 21 impbii AR1OnAR1On