Metamath Proof Explorer


Theorem uniwun

Description: Every set is contained in a weak universe. This is the analogue of grothtsk for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion uniwun WUni = V

Proof

Step Hyp Ref Expression
1 eqv WUni = V x x WUni
2 snex x V
3 wunex x V u WUni x u
4 2 3 ax-mp u WUni x u
5 eluni2 x WUni u WUni x u
6 vex x V
7 6 snss x u x u
8 7 rexbii u WUni x u u WUni x u
9 5 8 bitri x WUni u WUni x u
10 4 9 mpbir x WUni
11 1 10 mpgbir WUni = V