Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
unixp0
Next ⟩
unixpid
Metamath Proof Explorer
Ascii
Unicode
Theorem
unixp0
Description:
A Cartesian product is empty iff its union is empty.
(Contributed by
NM
, 20-Sep-2006)
Ref
Expression
Assertion
unixp0
⊢
A
×
B
=
∅
↔
⋃
A
×
B
=
∅
Proof
Step
Hyp
Ref
Expression
1
unieq
⊢
A
×
B
=
∅
→
⋃
A
×
B
=
⋃
∅
2
uni0
⊢
⋃
∅
=
∅
3
1
2
eqtrdi
⊢
A
×
B
=
∅
→
⋃
A
×
B
=
∅
4
n0
⊢
A
×
B
≠
∅
↔
∃
z
z
∈
A
×
B
5
elxp3
⊢
z
∈
A
×
B
↔
∃
x
∃
y
x
y
=
z
∧
x
y
∈
A
×
B
6
elssuni
⊢
x
y
∈
A
×
B
→
x
y
⊆
⋃
A
×
B
7
vex
⊢
x
∈
V
8
vex
⊢
y
∈
V
9
7
8
opnzi
⊢
x
y
≠
∅
10
ssn0
⊢
x
y
⊆
⋃
A
×
B
∧
x
y
≠
∅
→
⋃
A
×
B
≠
∅
11
6
9
10
sylancl
⊢
x
y
∈
A
×
B
→
⋃
A
×
B
≠
∅
12
11
adantl
⊢
x
y
=
z
∧
x
y
∈
A
×
B
→
⋃
A
×
B
≠
∅
13
12
exlimivv
⊢
∃
x
∃
y
x
y
=
z
∧
x
y
∈
A
×
B
→
⋃
A
×
B
≠
∅
14
5
13
sylbi
⊢
z
∈
A
×
B
→
⋃
A
×
B
≠
∅
15
14
exlimiv
⊢
∃
z
z
∈
A
×
B
→
⋃
A
×
B
≠
∅
16
4
15
sylbi
⊢
A
×
B
≠
∅
→
⋃
A
×
B
≠
∅
17
16
necon4i
⊢
⋃
A
×
B
=
∅
→
A
×
B
=
∅
18
3
17
impbii
⊢
A
×
B
=
∅
↔
⋃
A
×
B
=
∅