Metamath Proof Explorer


Theorem unixp0

Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006)

Ref Expression
Assertion unixp0 A × B = A × B =

Proof

Step Hyp Ref Expression
1 unieq A × B = A × B =
2 uni0 =
3 1 2 eqtrdi A × B = A × B =
4 n0 A × B z z A × B
5 elxp3 z A × B x y x y = z x y A × B
6 elssuni x y A × B x y A × B
7 vex x V
8 vex y V
9 7 8 opnzi x y
10 ssn0 x y A × B x y A × B
11 6 9 10 sylancl x y A × B A × B
12 11 adantl x y = z x y A × B A × B
13 12 exlimivv x y x y = z x y A × B A × B
14 5 13 sylbi z A × B A × B
15 14 exlimiv z z A × B A × B
16 4 15 sylbi A × B A × B
17 16 necon4i A × B = A × B =
18 3 17 impbii A × B = A × B =