Metamath Proof Explorer


Theorem unizlim

Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003)

Ref Expression
Assertion unizlim Ord A A = A A = Lim A

Proof

Step Hyp Ref Expression
1 df-ne A ¬ A =
2 df-lim Lim A Ord A A A = A
3 2 biimpri Ord A A A = A Lim A
4 3 3exp Ord A A A = A Lim A
5 1 4 syl5bir Ord A ¬ A = A = A Lim A
6 5 com23 Ord A A = A ¬ A = Lim A
7 6 imp Ord A A = A ¬ A = Lim A
8 7 orrd Ord A A = A A = Lim A
9 8 ex Ord A A = A A = Lim A
10 uni0 =
11 10 eqcomi =
12 id A = A =
13 unieq A = A =
14 11 12 13 3eqtr4a A = A = A
15 limuni Lim A A = A
16 14 15 jaoi A = Lim A A = A
17 9 16 impbid1 Ord A A = A A = Lim A