Metamath Proof Explorer


Theorem unmbl

Description: A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion unmbl A dom vol B dom vol A B dom vol

Proof

Step Hyp Ref Expression
1 mblss A dom vol A
2 mblss B dom vol B
3 1 2 anim12i A dom vol B dom vol A B
4 unss A B A B
5 3 4 sylib A dom vol B dom vol A B
6 elpwi x 𝒫 x
7 inss1 x A B x
8 ovolsscl x A B x x vol * x vol * x A B
9 7 8 mp3an1 x vol * x vol * x A B
10 9 adantl A dom vol B dom vol x vol * x vol * x A B
11 inss1 x A x
12 ovolsscl x A x x vol * x vol * x A
13 11 12 mp3an1 x vol * x vol * x A
14 13 adantl A dom vol B dom vol x vol * x vol * x A
15 inss1 x A B x A
16 difss x A x
17 simprl A dom vol B dom vol x vol * x x
18 16 17 sstrid A dom vol B dom vol x vol * x x A
19 ovolsscl x A x x vol * x vol * x A
20 16 19 mp3an1 x vol * x vol * x A
21 20 adantl A dom vol B dom vol x vol * x vol * x A
22 ovolsscl x A B x A x A vol * x A vol * x A B
23 15 18 21 22 mp3an2i A dom vol B dom vol x vol * x vol * x A B
24 14 23 readdcld A dom vol B dom vol x vol * x vol * x A + vol * x A B
25 difss x A B x
26 ovolsscl x A B x x vol * x vol * x A B
27 25 26 mp3an1 x vol * x vol * x A B
28 27 adantl A dom vol B dom vol x vol * x vol * x A B
29 incom x A B = B x A
30 indifcom B x A = x B A
31 29 30 eqtri x A B = x B A
32 31 uneq2i x A x A B = x A x B A
33 indi x A B A = x A x B A
34 undif2 A B A = A B
35 34 ineq2i x A B A = x A B
36 32 33 35 3eqtr2ri x A B = x A x A B
37 36 fveq2i vol * x A B = vol * x A x A B
38 11 17 sstrid A dom vol B dom vol x vol * x x A
39 15 18 sstrid A dom vol B dom vol x vol * x x A B
40 ovolun x A vol * x A x A B vol * x A B vol * x A x A B vol * x A + vol * x A B
41 38 14 39 23 40 syl22anc A dom vol B dom vol x vol * x vol * x A x A B vol * x A + vol * x A B
42 37 41 eqbrtrid A dom vol B dom vol x vol * x vol * x A B vol * x A + vol * x A B
43 10 24 28 42 leadd1dd A dom vol B dom vol x vol * x vol * x A B + vol * x A B vol * x A + vol * x A B + vol * x A B
44 simplr A dom vol B dom vol x vol * x B dom vol
45 mblsplit B dom vol x A vol * x A vol * x A = vol * x A B + vol * x A B
46 44 18 21 45 syl3anc A dom vol B dom vol x vol * x vol * x A = vol * x A B + vol * x A B
47 difun1 x A B = x A B
48 47 fveq2i vol * x A B = vol * x A B
49 48 oveq2i vol * x A B + vol * x A B = vol * x A B + vol * x A B
50 46 49 eqtr4di A dom vol B dom vol x vol * x vol * x A = vol * x A B + vol * x A B
51 50 oveq2d A dom vol B dom vol x vol * x vol * x A + vol * x A = vol * x A + vol * x A B + vol * x A B
52 simpll A dom vol B dom vol x vol * x A dom vol
53 simprr A dom vol B dom vol x vol * x vol * x
54 mblsplit A dom vol x vol * x vol * x = vol * x A + vol * x A
55 52 17 53 54 syl3anc A dom vol B dom vol x vol * x vol * x = vol * x A + vol * x A
56 14 recnd A dom vol B dom vol x vol * x vol * x A
57 23 recnd A dom vol B dom vol x vol * x vol * x A B
58 28 recnd A dom vol B dom vol x vol * x vol * x A B
59 56 57 58 addassd A dom vol B dom vol x vol * x vol * x A + vol * x A B + vol * x A B = vol * x A + vol * x A B + vol * x A B
60 51 55 59 3eqtr4d A dom vol B dom vol x vol * x vol * x = vol * x A + vol * x A B + vol * x A B
61 43 60 breqtrrd A dom vol B dom vol x vol * x vol * x A B + vol * x A B vol * x
62 61 expr A dom vol B dom vol x vol * x vol * x A B + vol * x A B vol * x
63 6 62 sylan2 A dom vol B dom vol x 𝒫 vol * x vol * x A B + vol * x A B vol * x
64 63 ralrimiva A dom vol B dom vol x 𝒫 vol * x vol * x A B + vol * x A B vol * x
65 ismbl2 A B dom vol A B x 𝒫 vol * x vol * x A B + vol * x A B vol * x
66 5 64 65 sylanbrc A dom vol B dom vol A B dom vol