Metamath Proof Explorer


Theorem unnum

Description: The union of two numerable sets is numerable. (Contributed by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion unnum A dom card B dom card A B dom card

Proof

Step Hyp Ref Expression
1 djunum A dom card B dom card A ⊔︀ B dom card
2 undjudom A dom card B dom card A B A ⊔︀ B
3 numdom A ⊔︀ B dom card A B A ⊔︀ B A B dom card
4 1 2 3 syl2anc A dom card B dom card A B dom card