Metamath Proof Explorer


Theorem unon

Description: The class of all ordinal numbers is its own union. Exercise 11 of TakeutiZaring p. 40. (Contributed by NM, 12-Nov-2003)

Ref Expression
Assertion unon On = On

Proof

Step Hyp Ref Expression
1 eluni2 x On y On x y
2 onelon y On x y x On
3 2 rexlimiva y On x y x On
4 1 3 sylbi x On x On
5 vex x V
6 5 sucid x suc x
7 suceloni x On suc x On
8 elunii x suc x suc x On x On
9 6 7 8 sylancr x On x On
10 4 9 impbii x On x On
11 10 eqriv On = On