Metamath Proof Explorer


Theorem unop

Description: Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion unop T UniOp A B T A ih T B = A ih B

Proof

Step Hyp Ref Expression
1 elunop T UniOp T : onto x y T x ih T y = x ih y
2 1 simprbi T UniOp x y T x ih T y = x ih y
3 2 3ad2ant1 T UniOp A B x y T x ih T y = x ih y
4 fveq2 x = A T x = T A
5 4 oveq1d x = A T x ih T y = T A ih T y
6 oveq1 x = A x ih y = A ih y
7 5 6 eqeq12d x = A T x ih T y = x ih y T A ih T y = A ih y
8 fveq2 y = B T y = T B
9 8 oveq2d y = B T A ih T y = T A ih T B
10 oveq2 y = B A ih y = A ih B
11 9 10 eqeq12d y = B T A ih T y = A ih y T A ih T B = A ih B
12 7 11 rspc2v A B x y T x ih T y = x ih y T A ih T B = A ih B
13 12 3adant1 T UniOp A B x y T x ih T y = x ih y T A ih T B = A ih B
14 3 13 mpd T UniOp A B T A ih T B = A ih B