Metamath Proof Explorer


Theorem unopadj

Description: The inverse (converse) of a unitary operator is its adjoint. Equation 2 of AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion unopadj T UniOp A B T A ih B = A ih T -1 B

Proof

Step Hyp Ref Expression
1 unopf1o T UniOp T : 1-1 onto
2 f1ocnvfv2 T : 1-1 onto B T T -1 B = B
3 1 2 sylan T UniOp B T T -1 B = B
4 3 3adant2 T UniOp A B T T -1 B = B
5 4 oveq2d T UniOp A B T A ih T T -1 B = T A ih B
6 f1ocnv T : 1-1 onto T -1 : 1-1 onto
7 f1of T -1 : 1-1 onto T -1 :
8 1 6 7 3syl T UniOp T -1 :
9 8 ffvelrnda T UniOp B T -1 B
10 9 3adant2 T UniOp A B T -1 B
11 unop T UniOp A T -1 B T A ih T T -1 B = A ih T -1 B
12 10 11 syld3an3 T UniOp A B T A ih T T -1 B = A ih T -1 B
13 5 12 eqtr3d T UniOp A B T A ih B = A ih T -1 B