Metamath Proof Explorer


Theorem unopadj2

Description: The adjoint of a unitary operator is its inverse (converse). Equation 2 of AkhiezerGlazman p. 72. (Contributed by NM, 23-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion unopadj2 T UniOp adj h T = T -1

Proof

Step Hyp Ref Expression
1 unoplin T UniOp T LinOp
2 lnopf T LinOp T :
3 1 2 syl T UniOp T :
4 cnvunop T UniOp T -1 UniOp
5 unoplin T -1 UniOp T -1 LinOp
6 lnopf T -1 LinOp T -1 :
7 4 5 6 3syl T UniOp T -1 :
8 unopadj T UniOp x y T x ih y = x ih T -1 y
9 8 3expib T UniOp x y T x ih y = x ih T -1 y
10 9 ralrimivv T UniOp x y T x ih y = x ih T -1 y
11 adjeq T : T -1 : x y T x ih y = x ih T -1 y adj h T = T -1
12 3 7 10 11 syl3anc T UniOp adj h T = T -1