Step |
Hyp |
Ref |
Expression |
1 |
|
elunop |
|
2 |
1
|
simplbi |
|
3 |
|
fof |
|
4 |
2 3
|
syl |
|
5 |
|
unop |
|
6 |
5
|
3anidm23 |
|
7 |
6
|
3adant3 |
|
8 |
|
unop |
|
9 |
8
|
3anidm23 |
|
10 |
9
|
3adant2 |
|
11 |
7 10
|
oveq12d |
|
12 |
|
unop |
|
13 |
|
unop |
|
14 |
13
|
3com23 |
|
15 |
12 14
|
oveq12d |
|
16 |
11 15
|
oveq12d |
|
17 |
16
|
3expb |
|
18 |
|
ffvelrn |
|
19 |
|
ffvelrn |
|
20 |
18 19
|
anim12dan |
|
21 |
4 20
|
sylan |
|
22 |
|
normlem9at |
|
23 |
21 22
|
syl |
|
24 |
|
normlem9at |
|
25 |
24
|
adantl |
|
26 |
17 23 25
|
3eqtr4rd |
|
27 |
26
|
eqeq1d |
|
28 |
|
hvsubcl |
|
29 |
|
his6 |
|
30 |
28 29
|
syl |
|
31 |
|
hvsubeq0 |
|
32 |
30 31
|
bitrd |
|
33 |
32
|
adantl |
|
34 |
|
hvsubcl |
|
35 |
|
his6 |
|
36 |
34 35
|
syl |
|
37 |
|
hvsubeq0 |
|
38 |
36 37
|
bitrd |
|
39 |
21 38
|
syl |
|
40 |
27 33 39
|
3bitr3rd |
|
41 |
40
|
biimpd |
|
42 |
41
|
ralrimivva |
|
43 |
|
dff13 |
|
44 |
4 42 43
|
sylanbrc |
|
45 |
|
df-f1o |
|
46 |
44 2 45
|
sylanbrc |
|