Step |
Hyp |
Ref |
Expression |
1 |
|
unopf1o |
|
2 |
|
f1of |
|
3 |
1 2
|
syl |
|
4 |
|
simplll |
|
5 |
|
hvmulcl |
|
6 |
|
hvaddcl |
|
7 |
5 6
|
sylan |
|
8 |
7
|
adantll |
|
9 |
8
|
adantr |
|
10 |
|
simpr |
|
11 |
|
unopadj |
|
12 |
4 9 10 11
|
syl3anc |
|
13 |
|
simprl |
|
14 |
13
|
ad2antrr |
|
15 |
|
simprr |
|
16 |
15
|
ad2antrr |
|
17 |
|
simplr |
|
18 |
|
cnvunop |
|
19 |
|
unopf1o |
|
20 |
|
f1of |
|
21 |
18 19 20
|
3syl |
|
22 |
21
|
ffvelrnda |
|
23 |
22
|
adantlr |
|
24 |
23
|
adantllr |
|
25 |
|
hiassdi |
|
26 |
14 16 17 24 25
|
syl22anc |
|
27 |
3
|
ffvelrnda |
|
28 |
27
|
adantrl |
|
29 |
28
|
ad2antrr |
|
30 |
3
|
ffvelrnda |
|
31 |
30
|
adantr |
|
32 |
31
|
adantllr |
|
33 |
|
hiassdi |
|
34 |
14 29 32 10 33
|
syl22anc |
|
35 |
|
unopadj |
|
36 |
35
|
3expa |
|
37 |
36
|
oveq2d |
|
38 |
37
|
adantlrl |
|
39 |
38
|
adantlr |
|
40 |
|
unopadj |
|
41 |
40
|
3expa |
|
42 |
41
|
adantllr |
|
43 |
39 42
|
oveq12d |
|
44 |
34 43
|
eqtr2d |
|
45 |
12 26 44
|
3eqtrd |
|
46 |
45
|
ralrimiva |
|
47 |
|
ffvelrn |
|
48 |
7 47
|
sylan2 |
|
49 |
48
|
anassrs |
|
50 |
|
ffvelrn |
|
51 |
|
hvmulcl |
|
52 |
50 51
|
sylan2 |
|
53 |
52
|
an12s |
|
54 |
53
|
adantr |
|
55 |
|
ffvelrn |
|
56 |
55
|
adantlr |
|
57 |
|
hvaddcl |
|
58 |
54 56 57
|
syl2anc |
|
59 |
|
hial2eq |
|
60 |
49 58 59
|
syl2anc |
|
61 |
3 60
|
sylanl1 |
|
62 |
46 61
|
mpbid |
|
63 |
62
|
ralrimiva |
|
64 |
63
|
ralrimivva |
|
65 |
|
ellnop |
|
66 |
3 64 65
|
sylanbrc |
|