Database
BASIC TOPOLOGY
Topology
Topological spaces
Topologies
unopn
Next ⟩
0opn
Metamath Proof Explorer
Ascii
Unicode
Theorem
unopn
Description:
The union of two open sets is open.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
unopn
⊢
J
∈
Top
∧
A
∈
J
∧
B
∈
J
→
A
∪
B
∈
J
Proof
Step
Hyp
Ref
Expression
1
uniprg
⊢
A
∈
J
∧
B
∈
J
→
⋃
A
B
=
A
∪
B
2
1
3adant1
⊢
J
∈
Top
∧
A
∈
J
∧
B
∈
J
→
⋃
A
B
=
A
∪
B
3
prssi
⊢
A
∈
J
∧
B
∈
J
→
A
B
⊆
J
4
uniopn
⊢
J
∈
Top
∧
A
B
⊆
J
→
⋃
A
B
∈
J
5
3
4
sylan2
⊢
J
∈
Top
∧
A
∈
J
∧
B
∈
J
→
⋃
A
B
∈
J
6
5
3impb
⊢
J
∈
Top
∧
A
∈
J
∧
B
∈
J
→
⋃
A
B
∈
J
7
2
6
eqeltrrd
⊢
J
∈
Top
∧
A
∈
J
∧
B
∈
J
→
A
∪
B
∈
J