Metamath Proof Explorer


Theorem unopn

Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion unopn J Top A J B J A B J

Proof

Step Hyp Ref Expression
1 uniprg A J B J A B = A B
2 1 3adant1 J Top A J B J A B = A B
3 prssi A J B J A B J
4 uniopn J Top A B J A B J
5 3 4 sylan2 J Top A J B J A B J
6 5 3impb J Top A J B J A B J
7 2 6 eqeltrrd J Top A J B J A B J