Metamath Proof Explorer


Theorem unopnorm

Description: A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion unopnorm T UniOp A norm T A = norm A

Proof

Step Hyp Ref Expression
1 unopf1o T UniOp T : 1-1 onto
2 f1of T : 1-1 onto T :
3 1 2 syl T UniOp T :
4 3 ffvelrnda T UniOp A T A
5 normcl T A norm T A
6 4 5 syl T UniOp A norm T A
7 normcl A norm A
8 7 adantl T UniOp A norm A
9 normge0 T A 0 norm T A
10 4 9 syl T UniOp A 0 norm T A
11 normge0 A 0 norm A
12 11 adantl T UniOp A 0 norm A
13 unop T UniOp A A T A ih T A = A ih A
14 13 3anidm23 T UniOp A T A ih T A = A ih A
15 normsq T A norm T A 2 = T A ih T A
16 4 15 syl T UniOp A norm T A 2 = T A ih T A
17 normsq A norm A 2 = A ih A
18 17 adantl T UniOp A norm A 2 = A ih A
19 14 16 18 3eqtr4d T UniOp A norm T A 2 = norm A 2
20 6 8 10 12 19 sq11d T UniOp A norm T A = norm A