Metamath Proof Explorer


Theorem unpreima

Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion unpreima Fun F F -1 A B = F -1 A F -1 B

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 elpreima F Fn dom F x F -1 A B x dom F F x A B
3 elun F x A B F x A F x B
4 3 anbi2i x dom F F x A B x dom F F x A F x B
5 andi x dom F F x A F x B x dom F F x A x dom F F x B
6 4 5 bitri x dom F F x A B x dom F F x A x dom F F x B
7 elun x F -1 A F -1 B x F -1 A x F -1 B
8 elpreima F Fn dom F x F -1 A x dom F F x A
9 elpreima F Fn dom F x F -1 B x dom F F x B
10 8 9 orbi12d F Fn dom F x F -1 A x F -1 B x dom F F x A x dom F F x B
11 7 10 syl5bb F Fn dom F x F -1 A F -1 B x dom F F x A x dom F F x B
12 6 11 bitr4id F Fn dom F x dom F F x A B x F -1 A F -1 B
13 2 12 bitrd F Fn dom F x F -1 A B x F -1 A F -1 B
14 13 eqrdv F Fn dom F F -1 A B = F -1 A F -1 B
15 1 14 sylbi Fun F F -1 A B = F -1 A F -1 B