Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Class abstractions with difference, union, and intersection of two classes
unrab
Next ⟩
inrab
Metamath Proof Explorer
Ascii
Unicode
Theorem
unrab
Description:
Union of two restricted class abstractions.
(Contributed by
NM
, 25-Mar-2004)
Ref
Expression
Assertion
unrab
⊢
x
∈
A
|
φ
∪
x
∈
A
|
ψ
=
x
∈
A
|
φ
∨
ψ
Proof
Step
Hyp
Ref
Expression
1
df-rab
⊢
x
∈
A
|
φ
=
x
|
x
∈
A
∧
φ
2
df-rab
⊢
x
∈
A
|
ψ
=
x
|
x
∈
A
∧
ψ
3
1
2
uneq12i
⊢
x
∈
A
|
φ
∪
x
∈
A
|
ψ
=
x
|
x
∈
A
∧
φ
∪
x
|
x
∈
A
∧
ψ
4
df-rab
⊢
x
∈
A
|
φ
∨
ψ
=
x
|
x
∈
A
∧
φ
∨
ψ
5
unab
⊢
x
|
x
∈
A
∧
φ
∪
x
|
x
∈
A
∧
ψ
=
x
|
x
∈
A
∧
φ
∨
x
∈
A
∧
ψ
6
andi
⊢
x
∈
A
∧
φ
∨
ψ
↔
x
∈
A
∧
φ
∨
x
∈
A
∧
ψ
7
6
abbii
⊢
x
|
x
∈
A
∧
φ
∨
ψ
=
x
|
x
∈
A
∧
φ
∨
x
∈
A
∧
ψ
8
5
7
eqtr4i
⊢
x
|
x
∈
A
∧
φ
∪
x
|
x
∈
A
∧
ψ
=
x
|
x
∈
A
∧
φ
∨
ψ
9
4
8
eqtr4i
⊢
x
∈
A
|
φ
∨
ψ
=
x
|
x
∈
A
∧
φ
∪
x
|
x
∈
A
∧
ψ
10
3
9
eqtr4i
⊢
x
∈
A
|
φ
∪
x
∈
A
|
ψ
=
x
∈
A
|
φ
∨
ψ