Metamath Proof Explorer


Theorem unsnen

Description: Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008)

Ref Expression
Hypotheses unsnen.1 A V
unsnen.2 B V
Assertion unsnen ¬ B A A B suc card A

Proof

Step Hyp Ref Expression
1 unsnen.1 A V
2 unsnen.2 B V
3 disjsn A B = ¬ B A
4 cardon card A On
5 4 onordi Ord card A
6 orddisj Ord card A card A card A =
7 5 6 ax-mp card A card A =
8 1 cardid card A A
9 8 ensymi A card A
10 fvex card A V
11 en2sn B V card A V B card A
12 2 10 11 mp2an B card A
13 unen A card A B card A A B = card A card A = A B card A card A
14 9 12 13 mpanl12 A B = card A card A = A B card A card A
15 7 14 mpan2 A B = A B card A card A
16 3 15 sylbir ¬ B A A B card A card A
17 df-suc suc card A = card A card A
18 16 17 breqtrrdi ¬ B A A B suc card A