Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Cardinal number theorems using Axiom of Choice
unsnen
Next ⟩
carddom
Metamath Proof Explorer
Ascii
Unicode
Theorem
unsnen
Description:
Equinumerosity of a set with a new element added.
(Contributed by
NM
, 7-Nov-2008)
Ref
Expression
Hypotheses
unsnen.1
⊢
A
∈
V
unsnen.2
⊢
B
∈
V
Assertion
unsnen
⊢
¬
B
∈
A
→
A
∪
B
≈
suc
⁡
card
⁡
A
Proof
Step
Hyp
Ref
Expression
1
unsnen.1
⊢
A
∈
V
2
unsnen.2
⊢
B
∈
V
3
disjsn
⊢
A
∩
B
=
∅
↔
¬
B
∈
A
4
cardon
⊢
card
⁡
A
∈
On
5
4
onordi
⊢
Ord
⁡
card
⁡
A
6
orddisj
⊢
Ord
⁡
card
⁡
A
→
card
⁡
A
∩
card
⁡
A
=
∅
7
5
6
ax-mp
⊢
card
⁡
A
∩
card
⁡
A
=
∅
8
1
cardid
⊢
card
⁡
A
≈
A
9
8
ensymi
⊢
A
≈
card
⁡
A
10
fvex
⊢
card
⁡
A
∈
V
11
en2sn
⊢
B
∈
V
∧
card
⁡
A
∈
V
→
B
≈
card
⁡
A
12
2
10
11
mp2an
⊢
B
≈
card
⁡
A
13
unen
⊢
A
≈
card
⁡
A
∧
B
≈
card
⁡
A
∧
A
∩
B
=
∅
∧
card
⁡
A
∩
card
⁡
A
=
∅
→
A
∪
B
≈
card
⁡
A
∪
card
⁡
A
14
9
12
13
mpanl12
⊢
A
∩
B
=
∅
∧
card
⁡
A
∩
card
⁡
A
=
∅
→
A
∪
B
≈
card
⁡
A
∪
card
⁡
A
15
7
14
mpan2
⊢
A
∩
B
=
∅
→
A
∪
B
≈
card
⁡
A
∪
card
⁡
A
16
3
15
sylbir
⊢
¬
B
∈
A
→
A
∪
B
≈
card
⁡
A
∪
card
⁡
A
17
df-suc
⊢
suc
⁡
card
⁡
A
=
card
⁡
A
∪
card
⁡
A
18
16
17
breqtrrdi
⊢
¬
B
∈
A
→
A
∪
B
≈
suc
⁡
card
⁡
A