Metamath Proof Explorer


Theorem unss

Description: The union of two subclasses is a subclass. Theorem 27 of Suppes p. 27 and its converse. (Contributed by NM, 11-Jun-2004)

Ref Expression
Assertion unss A C B C A B C

Proof

Step Hyp Ref Expression
1 dfss2 A B C x x A B x C
2 19.26 x x A x C x B x C x x A x C x x B x C
3 elunant x A B x C x A x C x B x C
4 3 albii x x A B x C x x A x C x B x C
5 dfss2 A C x x A x C
6 dfss2 B C x x B x C
7 5 6 anbi12i A C B C x x A x C x x B x C
8 2 4 7 3bitr4i x x A B x C A C B C
9 1 8 bitr2i A C B C A B C