Metamath Proof Explorer


Theorem unwdomg

Description: Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion unwdomg A * B C * D B D = A C * B D

Proof

Step Hyp Ref Expression
1 brwdom3i A * B f a A b B a = f b
2 1 3ad2ant1 A * B C * D B D = f a A b B a = f b
3 brwdom3i C * D g a C b D a = g b
4 3 3ad2ant2 A * B C * D B D = g a C b D a = g b
5 4 adantr A * B C * D B D = a A b B a = f b g a C b D a = g b
6 relwdom Rel *
7 6 brrelex1i A * B A V
8 6 brrelex1i C * D C V
9 unexg A V C V A C V
10 7 8 9 syl2an A * B C * D A C V
11 10 3adant3 A * B C * D B D = A C V
12 11 adantr A * B C * D B D = a A b B a = f b a C b D a = g b A C V
13 6 brrelex2i A * B B V
14 6 brrelex2i C * D D V
15 unexg B V D V B D V
16 13 14 15 syl2an A * B C * D B D V
17 16 3adant3 A * B C * D B D = B D V
18 17 adantr A * B C * D B D = a A b B a = f b a C b D a = g b B D V
19 elun y A C y A y C
20 eqeq1 a = y a = f b y = f b
21 20 rexbidv a = y b B a = f b b B y = f b
22 21 rspcva y A a A b B a = f b b B y = f b
23 fveq2 b = z f b = f z
24 23 eqeq2d b = z y = f b y = f z
25 24 cbvrexvw b B y = f b z B y = f z
26 ssun1 B B D
27 iftrue z B if z B f g = f
28 27 fveq1d z B if z B f g z = f z
29 28 eqeq2d z B y = if z B f g z y = f z
30 29 biimprd z B y = f z y = if z B f g z
31 30 reximia z B y = f z z B y = if z B f g z
32 ssrexv B B D z B y = if z B f g z z B D y = if z B f g z
33 26 31 32 mpsyl z B y = f z z B D y = if z B f g z
34 25 33 sylbi b B y = f b z B D y = if z B f g z
35 22 34 syl y A a A b B a = f b z B D y = if z B f g z
36 35 ancoms a A b B a = f b y A z B D y = if z B f g z
37 36 adantlr a A b B a = f b a C b D a = g b y A z B D y = if z B f g z
38 37 adantll B D = a A b B a = f b a C b D a = g b y A z B D y = if z B f g z
39 eqeq1 a = y a = g b y = g b
40 39 rexbidv a = y b D a = g b b D y = g b
41 fveq2 b = z g b = g z
42 41 eqeq2d b = z y = g b y = g z
43 42 cbvrexvw b D y = g b z D y = g z
44 40 43 bitrdi a = y b D a = g b z D y = g z
45 44 rspccva a C b D a = g b y C z D y = g z
46 ssun2 D B D
47 minel z D B D = ¬ z B
48 47 ancoms B D = z D ¬ z B
49 48 iffalsed B D = z D if z B f g = g
50 49 fveq1d B D = z D if z B f g z = g z
51 50 eqeq2d B D = z D y = if z B f g z y = g z
52 51 biimprd B D = z D y = g z y = if z B f g z
53 52 reximdva B D = z D y = g z z D y = if z B f g z
54 53 imp B D = z D y = g z z D y = if z B f g z
55 ssrexv D B D z D y = if z B f g z z B D y = if z B f g z
56 46 54 55 mpsyl B D = z D y = g z z B D y = if z B f g z
57 45 56 sylan2 B D = a C b D a = g b y C z B D y = if z B f g z
58 57 anassrs B D = a C b D a = g b y C z B D y = if z B f g z
59 58 adantlrl B D = a A b B a = f b a C b D a = g b y C z B D y = if z B f g z
60 38 59 jaodan B D = a A b B a = f b a C b D a = g b y A y C z B D y = if z B f g z
61 19 60 sylan2b B D = a A b B a = f b a C b D a = g b y A C z B D y = if z B f g z
62 61 expl B D = a A b B a = f b a C b D a = g b y A C z B D y = if z B f g z
63 62 3ad2ant3 A * B C * D B D = a A b B a = f b a C b D a = g b y A C z B D y = if z B f g z
64 63 impl A * B C * D B D = a A b B a = f b a C b D a = g b y A C z B D y = if z B f g z
65 12 18 64 wdom2d A * B C * D B D = a A b B a = f b a C b D a = g b A C * B D
66 65 expr A * B C * D B D = a A b B a = f b a C b D a = g b A C * B D
67 66 exlimdv A * B C * D B D = a A b B a = f b g a C b D a = g b A C * B D
68 5 67 mpd A * B C * D B D = a A b B a = f b A C * B D
69 2 68 exlimddv A * B C * D B D = A C * B D