Step |
Hyp |
Ref |
Expression |
1 |
|
brwdom3i |
|
2 |
1
|
3ad2ant1 |
|
3 |
|
brwdom3i |
|
4 |
3
|
3ad2ant2 |
|
5 |
4
|
adantr |
|
6 |
|
relwdom |
|
7 |
6
|
brrelex1i |
|
8 |
6
|
brrelex1i |
|
9 |
|
unexg |
|
10 |
7 8 9
|
syl2an |
|
11 |
10
|
3adant3 |
|
12 |
11
|
adantr |
|
13 |
6
|
brrelex2i |
|
14 |
6
|
brrelex2i |
|
15 |
|
unexg |
|
16 |
13 14 15
|
syl2an |
|
17 |
16
|
3adant3 |
|
18 |
17
|
adantr |
|
19 |
|
elun |
|
20 |
|
eqeq1 |
|
21 |
20
|
rexbidv |
|
22 |
21
|
rspcva |
|
23 |
|
fveq2 |
|
24 |
23
|
eqeq2d |
|
25 |
24
|
cbvrexvw |
|
26 |
|
ssun1 |
|
27 |
|
iftrue |
|
28 |
27
|
fveq1d |
|
29 |
28
|
eqeq2d |
|
30 |
29
|
biimprd |
|
31 |
30
|
reximia |
|
32 |
|
ssrexv |
|
33 |
26 31 32
|
mpsyl |
|
34 |
25 33
|
sylbi |
|
35 |
22 34
|
syl |
|
36 |
35
|
ancoms |
|
37 |
36
|
adantlr |
|
38 |
37
|
adantll |
|
39 |
|
eqeq1 |
|
40 |
39
|
rexbidv |
|
41 |
|
fveq2 |
|
42 |
41
|
eqeq2d |
|
43 |
42
|
cbvrexvw |
|
44 |
40 43
|
bitrdi |
|
45 |
44
|
rspccva |
|
46 |
|
ssun2 |
|
47 |
|
minel |
|
48 |
47
|
ancoms |
|
49 |
48
|
iffalsed |
|
50 |
49
|
fveq1d |
|
51 |
50
|
eqeq2d |
|
52 |
51
|
biimprd |
|
53 |
52
|
reximdva |
|
54 |
53
|
imp |
|
55 |
|
ssrexv |
|
56 |
46 54 55
|
mpsyl |
|
57 |
45 56
|
sylan2 |
|
58 |
57
|
anassrs |
|
59 |
58
|
adantlrl |
|
60 |
38 59
|
jaodan |
|
61 |
19 60
|
sylan2b |
|
62 |
61
|
expl |
|
63 |
62
|
3ad2ant3 |
|
64 |
63
|
impl |
|
65 |
12 18 64
|
wdom2d |
|
66 |
65
|
expr |
|
67 |
66
|
exlimdv |
|
68 |
5 67
|
mpd |
|
69 |
2 68
|
exlimddv |
|