Metamath Proof Explorer


Theorem unxpdom2

Description: Corollary of unxpdom . (Contributed by NM, 16-Sep-2004)

Ref Expression
Assertion unxpdom2 1 𝑜 A B A A B A × A

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i 1 𝑜 A A V
3 2 adantr 1 𝑜 A B A A V
4 1onn 1 𝑜 ω
5 xpsneng A V 1 𝑜 ω A × 1 𝑜 A
6 3 4 5 sylancl 1 𝑜 A B A A × 1 𝑜 A
7 6 ensymd 1 𝑜 A B A A A × 1 𝑜
8 endom A A × 1 𝑜 A A × 1 𝑜
9 7 8 syl 1 𝑜 A B A A A × 1 𝑜
10 simpr 1 𝑜 A B A B A
11 0ex V
12 xpsneng A V V A × A
13 3 11 12 sylancl 1 𝑜 A B A A × A
14 13 ensymd 1 𝑜 A B A A A ×
15 domentr B A A A × B A ×
16 10 14 15 syl2anc 1 𝑜 A B A B A ×
17 1n0 1 𝑜
18 xpsndisj 1 𝑜 A × 1 𝑜 A × =
19 17 18 mp1i 1 𝑜 A B A A × 1 𝑜 A × =
20 undom A A × 1 𝑜 B A × A × 1 𝑜 A × = A B A × 1 𝑜 A ×
21 9 16 19 20 syl21anc 1 𝑜 A B A A B A × 1 𝑜 A ×
22 sdomentr 1 𝑜 A A A × 1 𝑜 1 𝑜 A × 1 𝑜
23 7 22 syldan 1 𝑜 A B A 1 𝑜 A × 1 𝑜
24 sdomentr 1 𝑜 A A A × 1 𝑜 A ×
25 14 24 syldan 1 𝑜 A B A 1 𝑜 A ×
26 unxpdom 1 𝑜 A × 1 𝑜 1 𝑜 A × A × 1 𝑜 A × A × 1 𝑜 × A ×
27 23 25 26 syl2anc 1 𝑜 A B A A × 1 𝑜 A × A × 1 𝑜 × A ×
28 xpen A × 1 𝑜 A A × A A × 1 𝑜 × A × A × A
29 6 13 28 syl2anc 1 𝑜 A B A A × 1 𝑜 × A × A × A
30 domentr A × 1 𝑜 A × A × 1 𝑜 × A × A × 1 𝑜 × A × A × A A × 1 𝑜 A × A × A
31 27 29 30 syl2anc 1 𝑜 A B A A × 1 𝑜 A × A × A
32 domtr A B A × 1 𝑜 A × A × 1 𝑜 A × A × A A B A × A
33 21 31 32 syl2anc 1 𝑜 A B A A B A × A