Metamath Proof Explorer


Theorem unxpwdom2

Description: Lemma for unxpwdom . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion unxpwdom2 A × A B C A * B A C

Proof

Step Hyp Ref Expression
1 ensym A × A B C B C A × A
2 bren B C A × A f f : B C 1-1 onto A × A
3 ssdif0 A 1 st A × A f B A 1 st A × A f B =
4 dmxpid dom A × A = A
5 f1ofo f : B C 1-1 onto A × A f : B C onto A × A
6 forn f : B C onto A × A ran f = A × A
7 5 6 syl f : B C 1-1 onto A × A ran f = A × A
8 vex f V
9 8 rnex ran f V
10 7 9 eqeltrrdi f : B C 1-1 onto A × A A × A V
11 10 dmexd f : B C 1-1 onto A × A dom A × A V
12 4 11 eqeltrrid f : B C 1-1 onto A × A A V
13 imassrn 1 st A × A f B ran 1 st A × A f
14 f1stres 1 st A × A : A × A A
15 f1of f : B C 1-1 onto A × A f : B C A × A
16 fco 1 st A × A : A × A A f : B C A × A 1 st A × A f : B C A
17 14 15 16 sylancr f : B C 1-1 onto A × A 1 st A × A f : B C A
18 17 frnd f : B C 1-1 onto A × A ran 1 st A × A f A
19 13 18 sstrid f : B C 1-1 onto A × A 1 st A × A f B A
20 12 19 ssexd f : B C 1-1 onto A × A 1 st A × A f B V
21 20 adantr f : B C 1-1 onto A × A A 1 st A × A f B 1 st A × A f B V
22 simpr f : B C 1-1 onto A × A A 1 st A × A f B A 1 st A × A f B
23 ssdomg 1 st A × A f B V A 1 st A × A f B A 1 st A × A f B
24 21 22 23 sylc f : B C 1-1 onto A × A A 1 st A × A f B A 1 st A × A f B
25 domwdom A 1 st A × A f B A * 1 st A × A f B
26 24 25 syl f : B C 1-1 onto A × A A 1 st A × A f B A * 1 st A × A f B
27 17 ffund f : B C 1-1 onto A × A Fun 1 st A × A f
28 ssun1 B B C
29 f1odm f : B C 1-1 onto A × A dom f = B C
30 8 dmex dom f V
31 29 30 eqeltrrdi f : B C 1-1 onto A × A B C V
32 ssexg B B C B C V B V
33 28 31 32 sylancr f : B C 1-1 onto A × A B V
34 wdomima2g Fun 1 st A × A f B V 1 st A × A f B V 1 st A × A f B * B
35 27 33 20 34 syl3anc f : B C 1-1 onto A × A 1 st A × A f B * B
36 35 adantr f : B C 1-1 onto A × A A 1 st A × A f B 1 st A × A f B * B
37 wdomtr A * 1 st A × A f B 1 st A × A f B * B A * B
38 26 36 37 syl2anc f : B C 1-1 onto A × A A 1 st A × A f B A * B
39 38 orcd f : B C 1-1 onto A × A A 1 st A × A f B A * B A C
40 39 ex f : B C 1-1 onto A × A A 1 st A × A f B A * B A C
41 3 40 syl5bir f : B C 1-1 onto A × A A 1 st A × A f B = A * B A C
42 n0 A 1 st A × A f B x x A 1 st A × A f B
43 ssun2 C B C
44 ssexg C B C B C V C V
45 43 31 44 sylancr f : B C 1-1 onto A × A C V
46 45 adantr f : B C 1-1 onto A × A x A 1 st A × A f B C V
47 f1ofn f : B C 1-1 onto A × A f Fn B C
48 elpreima f Fn B C y f -1 x × A y B C f y x × A
49 47 48 syl f : B C 1-1 onto A × A y f -1 x × A y B C f y x × A
50 49 adantr f : B C 1-1 onto A × A x A 1 st A × A f B y f -1 x × A y B C f y x × A
51 elun y B C y B y C
52 df-or y B y C ¬ y B y C
53 51 52 bitri y B C ¬ y B y C
54 eldifn x A 1 st A × A f B ¬ x 1 st A × A f B
55 54 ad2antlr f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A ¬ x 1 st A × A f B
56 15 ad2antrr f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B f : B C A × A
57 simprr f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B y B
58 28 57 sselid f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B y B C
59 fvco3 f : B C A × A y B C 1 st A × A f y = 1 st A × A f y
60 56 58 59 syl2anc f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B 1 st A × A f y = 1 st A × A f y
61 eldifi x A 1 st A × A f B x A
62 61 adantl f : B C 1-1 onto A × A x A 1 st A × A f B x A
63 62 snssd f : B C 1-1 onto A × A x A 1 st A × A f B x A
64 xpss1 x A x × A A × A
65 63 64 syl f : B C 1-1 onto A × A x A 1 st A × A f B x × A A × A
66 65 adantr f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B x × A A × A
67 simprl f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B f y x × A
68 66 67 sseldd f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B f y A × A
69 68 fvresd f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B 1 st A × A f y = 1 st f y
70 xp1st f y x × A 1 st f y x
71 67 70 syl f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B 1 st f y x
72 69 71 eqeltrd f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B 1 st A × A f y x
73 elsni 1 st A × A f y x 1 st A × A f y = x
74 72 73 syl f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B 1 st A × A f y = x
75 60 74 eqtrd f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B 1 st A × A f y = x
76 17 ffnd f : B C 1-1 onto A × A 1 st A × A f Fn B C
77 76 ad2antrr f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B 1 st A × A f Fn B C
78 28 a1i f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B B B C
79 fnfvima 1 st A × A f Fn B C B B C y B 1 st A × A f y 1 st A × A f B
80 77 78 57 79 syl3anc f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B 1 st A × A f y 1 st A × A f B
81 75 80 eqeltrrd f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B x 1 st A × A f B
82 81 expr f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A y B x 1 st A × A f B
83 55 82 mtod f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A ¬ y B
84 83 ex f : B C 1-1 onto A × A x A 1 st A × A f B f y x × A ¬ y B
85 84 imim1d f : B C 1-1 onto A × A x A 1 st A × A f B ¬ y B y C f y x × A y C
86 53 85 syl5bi f : B C 1-1 onto A × A x A 1 st A × A f B y B C f y x × A y C
87 86 impd f : B C 1-1 onto A × A x A 1 st A × A f B y B C f y x × A y C
88 50 87 sylbid f : B C 1-1 onto A × A x A 1 st A × A f B y f -1 x × A y C
89 88 ssrdv f : B C 1-1 onto A × A x A 1 st A × A f B f -1 x × A C
90 ssdomg C V f -1 x × A C f -1 x × A C
91 46 89 90 sylc f : B C 1-1 onto A × A x A 1 st A × A f B f -1 x × A C
92 f1ocnv f : B C 1-1 onto A × A f -1 : A × A 1-1 onto B C
93 f1of1 f -1 : A × A 1-1 onto B C f -1 : A × A 1-1 B C
94 92 93 syl f : B C 1-1 onto A × A f -1 : A × A 1-1 B C
95 94 adantr f : B C 1-1 onto A × A x A 1 st A × A f B f -1 : A × A 1-1 B C
96 31 adantr f : B C 1-1 onto A × A x A 1 st A × A f B B C V
97 snex x V
98 12 adantr f : B C 1-1 onto A × A x A 1 st A × A f B A V
99 xpexg x V A V x × A V
100 97 98 99 sylancr f : B C 1-1 onto A × A x A 1 st A × A f B x × A V
101 f1imaen2g f -1 : A × A 1-1 B C B C V x × A A × A x × A V f -1 x × A x × A
102 95 96 65 100 101 syl22anc f : B C 1-1 onto A × A x A 1 st A × A f B f -1 x × A x × A
103 vex x V
104 xpsnen2g x V A V x × A A
105 103 98 104 sylancr f : B C 1-1 onto A × A x A 1 st A × A f B x × A A
106 entr f -1 x × A x × A x × A A f -1 x × A A
107 102 105 106 syl2anc f : B C 1-1 onto A × A x A 1 st A × A f B f -1 x × A A
108 domen1 f -1 x × A A f -1 x × A C A C
109 107 108 syl f : B C 1-1 onto A × A x A 1 st A × A f B f -1 x × A C A C
110 91 109 mpbid f : B C 1-1 onto A × A x A 1 st A × A f B A C
111 110 olcd f : B C 1-1 onto A × A x A 1 st A × A f B A * B A C
112 111 ex f : B C 1-1 onto A × A x A 1 st A × A f B A * B A C
113 112 exlimdv f : B C 1-1 onto A × A x x A 1 st A × A f B A * B A C
114 42 113 syl5bi f : B C 1-1 onto A × A A 1 st A × A f B A * B A C
115 41 114 pm2.61dne f : B C 1-1 onto A × A A * B A C
116 115 exlimiv f f : B C 1-1 onto A × A A * B A C
117 2 116 sylbi B C A × A A * B A C
118 1 117 syl A × A B C A * B A C