Step |
Hyp |
Ref |
Expression |
1 |
|
upbdrech.a |
|
2 |
|
upbdrech.b |
|
3 |
|
upbdrech.bd |
|
4 |
|
upbdrech.c |
|
5 |
2
|
ralrimiva |
|
6 |
|
nfra1 |
|
7 |
|
nfv |
|
8 |
|
simp3 |
|
9 |
|
rspa |
|
10 |
9
|
3adant3 |
|
11 |
8 10
|
eqeltrd |
|
12 |
11
|
3exp |
|
13 |
6 7 12
|
rexlimd |
|
14 |
13
|
abssdv |
|
15 |
5 14
|
syl |
|
16 |
|
eqidd |
|
17 |
16
|
rgen |
|
18 |
|
r19.2z |
|
19 |
1 17 18
|
sylancl |
|
20 |
|
nfv |
|
21 |
|
nfre1 |
|
22 |
21
|
nfex |
|
23 |
|
simpr |
|
24 |
|
elex |
|
25 |
2 24
|
syl |
|
26 |
|
isset |
|
27 |
25 26
|
sylib |
|
28 |
|
rspe |
|
29 |
23 27 28
|
syl2anc |
|
30 |
|
rexcom4 |
|
31 |
29 30
|
sylib |
|
32 |
31
|
3adant3 |
|
33 |
32
|
3exp |
|
34 |
20 22 33
|
rexlimd |
|
35 |
19 34
|
mpd |
|
36 |
|
abn0 |
|
37 |
35 36
|
sylibr |
|
38 |
|
vex |
|
39 |
|
eqeq1 |
|
40 |
39
|
rexbidv |
|
41 |
38 40
|
elab |
|
42 |
41
|
biimpi |
|
43 |
42
|
adantl |
|
44 |
|
nfra1 |
|
45 |
20 44
|
nfan |
|
46 |
21
|
nfsab |
|
47 |
45 46
|
nfan |
|
48 |
|
nfv |
|
49 |
|
simp3 |
|
50 |
|
simp1r |
|
51 |
|
simp2 |
|
52 |
|
rspa |
|
53 |
50 51 52
|
syl2anc |
|
54 |
49 53
|
eqbrtrd |
|
55 |
54
|
3exp |
|
56 |
55
|
adantr |
|
57 |
47 48 56
|
rexlimd |
|
58 |
43 57
|
mpd |
|
59 |
58
|
ralrimiva |
|
60 |
59
|
3adant2 |
|
61 |
60
|
3exp |
|
62 |
61
|
reximdvai |
|
63 |
3 62
|
mpd |
|
64 |
|
suprcl |
|
65 |
15 37 63 64
|
syl3anc |
|
66 |
4 65
|
eqeltrid |
|
67 |
15
|
adantr |
|
68 |
31 36
|
sylibr |
|
69 |
63
|
adantr |
|
70 |
|
elabrexg |
|
71 |
23 2 70
|
syl2anc |
|
72 |
|
suprub |
|
73 |
67 68 69 71 72
|
syl31anc |
|
74 |
73 4
|
breqtrrdi |
|
75 |
74
|
ralrimiva |
|
76 |
66 75
|
jca |
|