Metamath Proof Explorer


Theorem upbdrech

Description: Choice of an upper bound for a nonempty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses upbdrech.a φ A
upbdrech.b φ x A B
upbdrech.bd φ y x A B y
upbdrech.c C = sup z | x A z = B <
Assertion upbdrech φ C x A B C

Proof

Step Hyp Ref Expression
1 upbdrech.a φ A
2 upbdrech.b φ x A B
3 upbdrech.bd φ y x A B y
4 upbdrech.c C = sup z | x A z = B <
5 2 ralrimiva φ x A B
6 nfra1 x x A B
7 nfv x z
8 simp3 x A B x A z = B z = B
9 rspa x A B x A B
10 9 3adant3 x A B x A z = B B
11 8 10 eqeltrd x A B x A z = B z
12 11 3exp x A B x A z = B z
13 6 7 12 rexlimd x A B x A z = B z
14 13 abssdv x A B z | x A z = B
15 5 14 syl φ z | x A z = B
16 eqidd x A B = B
17 16 rgen x A B = B
18 r19.2z A x A B = B x A B = B
19 1 17 18 sylancl φ x A B = B
20 nfv x φ
21 nfre1 x x A z = B
22 21 nfex x z x A z = B
23 simpr φ x A x A
24 elex B B V
25 2 24 syl φ x A B V
26 isset B V z z = B
27 25 26 sylib φ x A z z = B
28 rspe x A z z = B x A z z = B
29 23 27 28 syl2anc φ x A x A z z = B
30 rexcom4 x A z z = B z x A z = B
31 29 30 sylib φ x A z x A z = B
32 31 3adant3 φ x A B = B z x A z = B
33 32 3exp φ x A B = B z x A z = B
34 20 22 33 rexlimd φ x A B = B z x A z = B
35 19 34 mpd φ z x A z = B
36 abn0 z | x A z = B z x A z = B
37 35 36 sylibr φ z | x A z = B
38 vex w V
39 eqeq1 z = w z = B w = B
40 39 rexbidv z = w x A z = B x A w = B
41 38 40 elab w z | x A z = B x A w = B
42 41 biimpi w z | x A z = B x A w = B
43 42 adantl φ x A B y w z | x A z = B x A w = B
44 nfra1 x x A B y
45 20 44 nfan x φ x A B y
46 21 nfsab x w z | x A z = B
47 45 46 nfan x φ x A B y w z | x A z = B
48 nfv x w y
49 simp3 φ x A B y x A w = B w = B
50 simp1r φ x A B y x A w = B x A B y
51 simp2 φ x A B y x A w = B x A
52 rspa x A B y x A B y
53 50 51 52 syl2anc φ x A B y x A w = B B y
54 49 53 eqbrtrd φ x A B y x A w = B w y
55 54 3exp φ x A B y x A w = B w y
56 55 adantr φ x A B y w z | x A z = B x A w = B w y
57 47 48 56 rexlimd φ x A B y w z | x A z = B x A w = B w y
58 43 57 mpd φ x A B y w z | x A z = B w y
59 58 ralrimiva φ x A B y w z | x A z = B w y
60 59 3adant2 φ y x A B y w z | x A z = B w y
61 60 3exp φ y x A B y w z | x A z = B w y
62 61 reximdvai φ y x A B y y w z | x A z = B w y
63 3 62 mpd φ y w z | x A z = B w y
64 suprcl z | x A z = B z | x A z = B y w z | x A z = B w y sup z | x A z = B <
65 15 37 63 64 syl3anc φ sup z | x A z = B <
66 4 65 eqeltrid φ C
67 15 adantr φ x A z | x A z = B
68 31 36 sylibr φ x A z | x A z = B
69 63 adantr φ x A y w z | x A z = B w y
70 elabrexg x A B B z | x A z = B
71 23 2 70 syl2anc φ x A B z | x A z = B
72 suprub z | x A z = B z | x A z = B y w z | x A z = B w y B z | x A z = B B sup z | x A z = B <
73 67 68 69 71 72 syl31anc φ x A B sup z | x A z = B <
74 73 4 breqtrrdi φ x A B C
75 74 ralrimiva φ x A B C
76 66 75 jca φ C x A B C