Metamath Proof Explorer


Theorem upbdrech2

Description: Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses upbdrech2.b φ x A B
upbdrech2.bd φ y x A B y
upbdrech2.c C = if A = 0 sup z | x A z = B <
Assertion upbdrech2 φ C x A B C

Proof

Step Hyp Ref Expression
1 upbdrech2.b φ x A B
2 upbdrech2.bd φ y x A B y
3 upbdrech2.c C = if A = 0 sup z | x A z = B <
4 iftrue A = if A = 0 sup z | x A z = B < = 0
5 0red A = 0
6 4 5 eqeltrd A = if A = 0 sup z | x A z = B <
7 6 adantl φ A = if A = 0 sup z | x A z = B <
8 simpr φ ¬ A = ¬ A =
9 8 iffalsed φ ¬ A = if A = 0 sup z | x A z = B < = sup z | x A z = B <
10 8 neqned φ ¬ A = A
11 1 adantlr φ ¬ A = x A B
12 2 adantr φ ¬ A = y x A B y
13 eqid sup z | x A z = B < = sup z | x A z = B <
14 10 11 12 13 upbdrech φ ¬ A = sup z | x A z = B < x A B sup z | x A z = B <
15 14 simpld φ ¬ A = sup z | x A z = B <
16 9 15 eqeltrd φ ¬ A = if A = 0 sup z | x A z = B <
17 7 16 pm2.61dan φ if A = 0 sup z | x A z = B <
18 3 17 eqeltrid φ C
19 rzal A = x A B C
20 19 adantl φ A = x A B C
21 14 simprd φ ¬ A = x A B sup z | x A z = B <
22 iffalse ¬ A = if A = 0 sup z | x A z = B < = sup z | x A z = B <
23 3 22 eqtrid ¬ A = C = sup z | x A z = B <
24 23 breq2d ¬ A = B C B sup z | x A z = B <
25 24 ralbidv ¬ A = x A B C x A B sup z | x A z = B <
26 25 adantl φ ¬ A = x A B C x A B sup z | x A z = B <
27 21 26 mpbird φ ¬ A = x A B C
28 20 27 pm2.61dan φ x A B C
29 18 28 jca φ C x A B C