Metamath Proof Explorer


Theorem updjud

Description: Universal property of the disjoint union. This theorem shows that the disjoint union, together with the left and right injections df-inl and df-inr , is thecoproduct in the category of sets, see Wikipedia "Coproduct", https://en.wikipedia.org/wiki/Coproduct (25-Aug-2023). This is a special case of Example 1 of coproducts in Section 10.67 of Adamek p. 185. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022)

Ref Expression
Hypotheses updjud.f φ F : A C
updjud.g φ G : B C
updjud.a φ A V
updjud.b φ B W
Assertion updjud φ ∃! h h : A ⊔︀ B C h inl A = F h inr B = G

Proof

Step Hyp Ref Expression
1 updjud.f φ F : A C
2 updjud.g φ G : B C
3 updjud.a φ A V
4 updjud.b φ B W
5 3 4 jca φ A V B W
6 djuex A V B W A ⊔︀ B V
7 mptexg A ⊔︀ B V x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x V
8 5 6 7 3syl φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x V
9 feq1 h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C
10 coeq1 h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h inl A = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A
11 10 eqeq1d h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F
12 coeq1 h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h inr B = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B
13 12 eqeq1d h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G
14 9 11 13 3anbi123d h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h : A ⊔︀ B C h inl A = F h inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G
15 eqeq1 h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h = k x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
16 15 imbi2d h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x k : A ⊔︀ B C k inl A = F k inr B = G h = k k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
17 16 ralbidv h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x k V k : A ⊔︀ B C k inl A = F k inr B = G h = k k V k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
18 14 17 anbi12d h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h : A ⊔︀ B C h inl A = F h inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G h = k x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
19 18 adantl φ h = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x h : A ⊔︀ B C h inl A = F h inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G h = k x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
20 eqid x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x
21 1 2 20 updjudhf φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C
22 1 2 20 updjudhcoinlf φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F
23 1 2 20 updjudhcoinrg φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G
24 simpr φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G
25 eqeq2 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F k inl A = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A k inl A = F
26 fvres z A inl A z = inl z
27 26 eqcomd z A inl z = inl A z
28 27 eqeq2d z A y = inl z y = inl A z
29 28 adantl x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A y = inl z y = inl A z
30 fveq1 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z = k inl A z
31 30 ad2antrr x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z = k inl A z
32 inlresf inl A : A A ⊔︀ B
33 ffn inl A : A A ⊔︀ B inl A Fn A
34 32 33 mp1i x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ inl A Fn A
35 fvco2 inl A Fn A z A x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z
36 34 35 sylan x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z
37 fvco2 inl A Fn A z A k inl A z = k inl A z
38 34 37 sylan x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A k inl A z = k inl A z
39 31 36 38 3eqtr3d x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z = k inl A z
40 fveq2 y = inl A z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z
41 fveq2 y = inl A z k y = k inl A z
42 40 41 eqeq12d y = inl A z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A z = k inl A z
43 39 42 syl5ibrcom x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A y = inl A z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
44 29 43 sylbid x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
45 44 expimpd x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
46 45 ex x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = k inl A φ z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
47 46 eqcoms k inl A = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A φ z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
48 25 47 syl6bir x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F k inl A = F φ z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
49 48 com23 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F φ k inl A = F z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
50 49 3ad2ant2 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G φ k inl A = F z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
51 50 impcom φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k inl A = F z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
52 51 com12 k inl A = F φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
53 52 3ad2ant2 k : A ⊔︀ B C k inl A = F k inr B = G φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
54 53 impcom φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G z A y = inl z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
55 54 com12 z A y = inl z φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
56 55 rexlimiva z A y = inl z φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
57 eqeq2 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k inr B = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B k inr B = G
58 fvres z B inr B z = inr z
59 58 eqcomd z B inr z = inr B z
60 59 eqeq2d z B y = inr z y = inr B z
61 60 adantl x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B y = inr z y = inr B z
62 fveq1 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z = k inr B z
63 62 ad2antrr x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z = k inr B z
64 inrresf inr B : B A ⊔︀ B
65 ffn inr B : B A ⊔︀ B inr B Fn B
66 64 65 mp1i x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ inr B Fn B
67 fvco2 inr B Fn B z B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z
68 66 67 sylan x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z
69 fvco2 inr B Fn B z B k inr B z = k inr B z
70 66 69 sylan x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B k inr B z = k inr B z
71 63 68 70 3eqtr3d x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z = k inr B z
72 fveq2 y = inr B z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z
73 fveq2 y = inr B z k y = k inr B z
74 72 73 eqeq12d y = inr B z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B z = k inr B z
75 71 74 syl5ibrcom x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B y = inr B z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
76 61 75 sylbid x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
77 76 expimpd x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
78 77 ex x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = k inr B φ z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
79 78 eqcoms k inr B = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B φ z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
80 57 79 syl6bir x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k inr B = G φ z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
81 80 com23 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G φ k inr B = G z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
82 81 3ad2ant3 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G φ k inr B = G z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
83 82 impcom φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k inr B = G z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
84 83 com12 k inr B = G φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
85 84 3ad2ant3 k : A ⊔︀ B C k inl A = F k inr B = G φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
86 85 impcom φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G z B y = inr z x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
87 86 com12 z B y = inr z φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
88 87 rexlimiva z B y = inr z φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
89 56 88 jaoi z A y = inl z z B y = inr z φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
90 djur y A ⊔︀ B z A y = inl z z B y = inr z
91 89 90 syl11 φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G y A ⊔︀ B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
92 91 ralrimiv φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G y A ⊔︀ B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
93 ffn x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x Fn A ⊔︀ B
94 93 3ad2ant1 x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x Fn A ⊔︀ B
95 94 adantl φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x Fn A ⊔︀ B
96 ffn k : A ⊔︀ B C k Fn A ⊔︀ B
97 96 3ad2ant1 k : A ⊔︀ B C k inl A = F k inr B = G k Fn A ⊔︀ B
98 eqfnfv x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x Fn A ⊔︀ B k Fn A ⊔︀ B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k y A ⊔︀ B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
99 95 97 98 syl2an φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k y A ⊔︀ B x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x y = k y
100 92 99 mpbird φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
101 100 ex φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
102 101 ralrimivw φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
103 24 102 jca φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
104 103 ex φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
105 21 22 23 104 mp3and φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x : A ⊔︀ B C x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inl A = F x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x = k
106 8 19 105 rspcedvd φ h V h : A ⊔︀ B C h inl A = F h inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G h = k
107 feq1 h = k h : A ⊔︀ B C k : A ⊔︀ B C
108 coeq1 h = k h inl A = k inl A
109 108 eqeq1d h = k h inl A = F k inl A = F
110 coeq1 h = k h inr B = k inr B
111 110 eqeq1d h = k h inr B = G k inr B = G
112 107 109 111 3anbi123d h = k h : A ⊔︀ B C h inl A = F h inr B = G k : A ⊔︀ B C k inl A = F k inr B = G
113 112 reu8 ∃! h V h : A ⊔︀ B C h inl A = F h inr B = G h V h : A ⊔︀ B C h inl A = F h inr B = G k V k : A ⊔︀ B C k inl A = F k inr B = G h = k
114 106 113 sylibr φ ∃! h V h : A ⊔︀ B C h inl A = F h inr B = G
115 reuv ∃! h V h : A ⊔︀ B C h inl A = F h inr B = G ∃! h h : A ⊔︀ B C h inl A = F h inr B = G
116 114 115 sylib φ ∃! h h : A ⊔︀ B C h inl A = F h inr B = G