| Step |
Hyp |
Ref |
Expression |
| 1 |
|
updjud.f |
|
| 2 |
|
updjud.g |
|
| 3 |
|
updjudhf.h |
|
| 4 |
1 2 3
|
updjudhf |
|
| 5 |
4
|
ffnd |
|
| 6 |
|
inlresf |
|
| 7 |
|
ffn |
|
| 8 |
6 7
|
mp1i |
|
| 9 |
|
frn |
|
| 10 |
6 9
|
mp1i |
|
| 11 |
|
fnco |
|
| 12 |
5 8 10 11
|
syl3anc |
|
| 13 |
1
|
ffnd |
|
| 14 |
|
fvco2 |
|
| 15 |
8 14
|
sylan |
|
| 16 |
|
fvres |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
fveqeq2 |
|
| 20 |
|
2fveq3 |
|
| 21 |
|
2fveq3 |
|
| 22 |
19 20 21
|
ifbieq12d |
|
| 23 |
22
|
adantl |
|
| 24 |
|
1stinl |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
iftrued |
|
| 28 |
23 27
|
eqtrd |
|
| 29 |
|
djulcl |
|
| 30 |
29
|
adantl |
|
| 31 |
1
|
adantr |
|
| 32 |
|
2ndinl |
|
| 33 |
32
|
adantl |
|
| 34 |
|
simpr |
|
| 35 |
33 34
|
eqeltrd |
|
| 36 |
31 35
|
ffvelcdmd |
|
| 37 |
3 28 30 36
|
fvmptd2 |
|
| 38 |
18 37
|
eqtrd |
|
| 39 |
33
|
fveq2d |
|
| 40 |
15 38 39
|
3eqtrd |
|
| 41 |
12 13 40
|
eqfnfvd |
|