Metamath Proof Explorer


Theorem updjudhcoinlf

Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022)

Ref Expression
Hypotheses updjud.f φ F : A C
updjud.g φ G : B C
updjudhf.h H = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x
Assertion updjudhcoinlf φ H inl A = F

Proof

Step Hyp Ref Expression
1 updjud.f φ F : A C
2 updjud.g φ G : B C
3 updjudhf.h H = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x
4 1 2 3 updjudhf φ H : A ⊔︀ B C
5 4 ffnd φ H Fn A ⊔︀ B
6 inlresf inl A : A A ⊔︀ B
7 ffn inl A : A A ⊔︀ B inl A Fn A
8 6 7 mp1i φ inl A Fn A
9 frn inl A : A A ⊔︀ B ran inl A A ⊔︀ B
10 6 9 mp1i φ ran inl A A ⊔︀ B
11 fnco H Fn A ⊔︀ B inl A Fn A ran inl A A ⊔︀ B H inl A Fn A
12 5 8 10 11 syl3anc φ H inl A Fn A
13 1 ffnd φ F Fn A
14 fvco2 inl A Fn A a A H inl A a = H inl A a
15 8 14 sylan φ a A H inl A a = H inl A a
16 fvres a A inl A a = inl a
17 16 adantl φ a A inl A a = inl a
18 17 fveq2d φ a A H inl A a = H inl a
19 fveqeq2 x = inl a 1 st x = 1 st inl a =
20 2fveq3 x = inl a F 2 nd x = F 2 nd inl a
21 2fveq3 x = inl a G 2 nd x = G 2 nd inl a
22 19 20 21 ifbieq12d x = inl a if 1 st x = F 2 nd x G 2 nd x = if 1 st inl a = F 2 nd inl a G 2 nd inl a
23 22 adantl φ a A x = inl a if 1 st x = F 2 nd x G 2 nd x = if 1 st inl a = F 2 nd inl a G 2 nd inl a
24 1stinl a A 1 st inl a =
25 24 adantl φ a A 1 st inl a =
26 25 adantr φ a A x = inl a 1 st inl a =
27 26 iftrued φ a A x = inl a if 1 st inl a = F 2 nd inl a G 2 nd inl a = F 2 nd inl a
28 23 27 eqtrd φ a A x = inl a if 1 st x = F 2 nd x G 2 nd x = F 2 nd inl a
29 djulcl a A inl a A ⊔︀ B
30 29 adantl φ a A inl a A ⊔︀ B
31 1 adantr φ a A F : A C
32 2ndinl a A 2 nd inl a = a
33 32 adantl φ a A 2 nd inl a = a
34 simpr φ a A a A
35 33 34 eqeltrd φ a A 2 nd inl a A
36 31 35 ffvelrnd φ a A F 2 nd inl a C
37 3 28 30 36 fvmptd2 φ a A H inl a = F 2 nd inl a
38 18 37 eqtrd φ a A H inl A a = F 2 nd inl a
39 33 fveq2d φ a A F 2 nd inl a = F a
40 15 38 39 3eqtrd φ a A H inl A a = F a
41 12 13 40 eqfnfvd φ H inl A = F