| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upfval.b |
|
| 2 |
|
upfval.c |
|
| 3 |
|
upfval.h |
|
| 4 |
|
upfval.j |
|
| 5 |
|
upfval.o |
|
| 6 |
|
upfval2.w |
|
| 7 |
|
upfval2.f |
|
| 8 |
|
anass |
|
| 9 |
8
|
opabbii |
|
| 10 |
1
|
fvexi |
|
| 11 |
10
|
a1i |
|
| 12 |
|
simprl |
|
| 13 |
|
ovexd |
|
| 14 |
12 13
|
abexd |
|
| 15 |
11 14
|
opabex3d |
|
| 16 |
9 15
|
eqeltrid |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
fveq1d |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
eleq2d |
|
| 21 |
20
|
anbi2d |
|
| 22 |
17
|
fveq1d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
18
|
opeq2d |
|
| 25 |
24 22
|
oveq12d |
|
| 26 |
|
fveq2 |
|
| 27 |
26
|
oveqd |
|
| 28 |
27
|
fveq1d |
|
| 29 |
|
eqidd |
|
| 30 |
25 28 29
|
oveq123d |
|
| 31 |
30
|
eqeq2d |
|
| 32 |
31
|
reubidv |
|
| 33 |
23 32
|
raleqbidv |
|
| 34 |
33
|
ralbidv |
|
| 35 |
21 34
|
anbi12d |
|
| 36 |
35
|
opabbidv |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
eleq2d |
|
| 39 |
38
|
anbi2d |
|
| 40 |
|
oveq1 |
|
| 41 |
|
opeq1 |
|
| 42 |
41
|
oveq1d |
|
| 43 |
42
|
oveqd |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
44
|
reubidv |
|
| 46 |
40 45
|
raleqbidv |
|
| 47 |
46
|
ralbidv |
|
| 48 |
39 47
|
anbi12d |
|
| 49 |
48
|
opabbidv |
|
| 50 |
1 2 3 4 5
|
upfval |
Could not format ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) : No typesetting found for |- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) with typecode |- |
| 51 |
36 49 50
|
ovmpog |
Could not format ( ( F e. ( D Func E ) /\ W e. C /\ { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) : No typesetting found for |- ( ( F e. ( D Func E ) /\ W e. C /\ { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) with typecode |- |
| 52 |
7 6 16 51
|
syl3anc |
Could not format ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) : No typesetting found for |- ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) with typecode |- |