Metamath Proof Explorer


Theorem upgr1e

Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 16-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 17-Apr-2021)

Ref Expression
Hypotheses upgr1e.v V = Vtx G
upgr1e.a φ A X
upgr1e.b φ B V
upgr1e.c φ C V
upgr1e.e φ iEdg G = A B C
Assertion upgr1e φ G UPGraph

Proof

Step Hyp Ref Expression
1 upgr1e.v V = Vtx G
2 upgr1e.a φ A X
3 upgr1e.b φ B V
4 upgr1e.c φ C V
5 upgr1e.e φ iEdg G = A B C
6 prex B C V
7 6 snid B C B C
8 7 a1i φ B C B C
9 2 8 fsnd φ A B C : A B C
10 3 4 prssd φ B C V
11 10 1 sseqtrdi φ B C Vtx G
12 6 elpw B C 𝒫 Vtx G B C Vtx G
13 11 12 sylibr φ B C 𝒫 Vtx G
14 13 3 upgr1elem φ B C x 𝒫 Vtx G | x 2
15 9 14 fssd φ A B C : A x 𝒫 Vtx G | x 2
16 15 ffdmd φ A B C : dom A B C x 𝒫 Vtx G | x 2
17 5 dmeqd φ dom iEdg G = dom A B C
18 5 17 feq12d φ iEdg G : dom iEdg G x 𝒫 Vtx G | x 2 A B C : dom A B C x 𝒫 Vtx G | x 2
19 16 18 mpbird φ iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
20 1 1vgrex B V G V
21 eqid Vtx G = Vtx G
22 eqid iEdg G = iEdg G
23 21 22 isupgr G V G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
24 3 20 23 3syl φ G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
25 19 24 mpbird φ G UPGraph