Database
GRAPH THEORY
Undirected graphs
Undirected pseudographs and multigraphs
upgr1elem
Next ⟩
upgr1e
Metamath Proof Explorer
Ascii
Unicode
Theorem
upgr1elem
Description:
Lemma for
upgr1e
and
uspgr1e
.
(Contributed by
AV
, 16-Oct-2020)
Ref
Expression
Hypotheses
upgr1elem.s
⊢
φ
→
B
C
∈
S
upgr1elem.b
⊢
φ
→
B
∈
W
Assertion
upgr1elem
⊢
φ
→
B
C
⊆
x
∈
S
∖
∅
|
x
≤
2
Proof
Step
Hyp
Ref
Expression
1
upgr1elem.s
⊢
φ
→
B
C
∈
S
2
upgr1elem.b
⊢
φ
→
B
∈
W
3
fveq2
⊢
x
=
B
C
→
x
=
B
C
4
3
breq1d
⊢
x
=
B
C
→
x
≤
2
↔
B
C
≤
2
5
prnzg
⊢
B
∈
W
→
B
C
≠
∅
6
2
5
syl
⊢
φ
→
B
C
≠
∅
7
eldifsn
⊢
B
C
∈
S
∖
∅
↔
B
C
∈
S
∧
B
C
≠
∅
8
1
6
7
sylanbrc
⊢
φ
→
B
C
∈
S
∖
∅
9
hashprlei
⊢
B
C
∈
Fin
∧
B
C
≤
2
10
9
simpri
⊢
B
C
≤
2
11
10
a1i
⊢
φ
→
B
C
≤
2
12
4
8
11
elrabd
⊢
φ
→
B
C
∈
x
∈
S
∖
∅
|
x
≤
2
13
12
snssd
⊢
φ
→
B
C
⊆
x
∈
S
∖
∅
|
x
≤
2