Metamath Proof Explorer


Theorem upgr1elem

Description: Lemma for upgr1e and uspgr1e . (Contributed by AV, 16-Oct-2020)

Ref Expression
Hypotheses upgr1elem.s φ B C S
upgr1elem.b φ B W
Assertion upgr1elem φ B C x S | x 2

Proof

Step Hyp Ref Expression
1 upgr1elem.s φ B C S
2 upgr1elem.b φ B W
3 fveq2 x = B C x = B C
4 3 breq1d x = B C x 2 B C 2
5 prnzg B W B C
6 2 5 syl φ B C
7 eldifsn B C S B C S B C
8 1 6 7 sylanbrc φ B C S
9 hashprlei B C Fin B C 2
10 9 simpri B C 2
11 10 a1i φ B C 2
12 4 8 11 elrabd φ B C x S | x 2
13 12 snssd φ B C x S | x 2