Metamath Proof Explorer


Theorem upgr3v3e3cycl

Description: If there is a cycle of length 3 in a pseudograph, there are three distinct vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017)

Ref Expression
Hypotheses upgr3v3e3cycl.e E=EdgG
upgr3v3e3cycl.v V=VtxG
Assertion upgr3v3e3cycl GUPGraphFCyclesGPF=3aVbVcVabEbcEcaEabbcca

Proof

Step Hyp Ref Expression
1 upgr3v3e3cycl.e E=EdgG
2 upgr3v3e3cycl.v V=VtxG
3 cyclprop FCyclesGPFPathsGPP0=PF
4 pthiswlk FPathsGPFWalksGP
5 1 upgrwlkvtxedg GUPGraphFWalksGPk0..^FPkPk+1E
6 fveq2 F=3PF=P3
7 6 eqeq2d F=3P0=PFP0=P3
8 7 anbi2d F=3FPathsGPP0=PFFPathsGPP0=P3
9 oveq2 F=30..^F=0..^3
10 fzo0to3tp 0..^3=012
11 9 10 eqtrdi F=30..^F=012
12 11 raleqdv F=3k0..^FPkPk+1Ek012PkPk+1E
13 c0ex 0V
14 1ex 1V
15 2ex 2V
16 fveq2 k=0Pk=P0
17 fv0p1e1 k=0Pk+1=P1
18 16 17 preq12d k=0PkPk+1=P0P1
19 18 eleq1d k=0PkPk+1EP0P1E
20 fveq2 k=1Pk=P1
21 oveq1 k=1k+1=1+1
22 1p1e2 1+1=2
23 21 22 eqtrdi k=1k+1=2
24 23 fveq2d k=1Pk+1=P2
25 20 24 preq12d k=1PkPk+1=P1P2
26 25 eleq1d k=1PkPk+1EP1P2E
27 fveq2 k=2Pk=P2
28 oveq1 k=2k+1=2+1
29 2p1e3 2+1=3
30 28 29 eqtrdi k=2k+1=3
31 30 fveq2d k=2Pk+1=P3
32 27 31 preq12d k=2PkPk+1=P2P3
33 32 eleq1d k=2PkPk+1EP2P3E
34 13 14 15 19 26 33 raltp k012PkPk+1EP0P1EP1P2EP2P3E
35 12 34 bitrdi F=3k0..^FPkPk+1EP0P1EP1P2EP2P3E
36 8 35 anbi12d F=3FPathsGPP0=PFk0..^FPkPk+1EFPathsGPP0=P3P0P1EP1P2EP2P3E
37 2 wlkp FWalksGPP:0FV
38 oveq2 F=30F=03
39 38 feq2d F=3P:0FVP:03V
40 id P:03VP:03V
41 3nn0 30
42 0elfz 30003
43 41 42 mp1i P:03V003
44 40 43 ffvelcdmd P:03VP0V
45 1nn0 10
46 1lt3 1<3
47 fvffz0 30101<3P:03VP1V
48 47 ex 30101<3P:03VP1V
49 41 45 46 48 mp3an P:03VP1V
50 2nn0 20
51 2lt3 2<3
52 fvffz0 30202<3P:03VP2V
53 52 ex 30202<3P:03VP2V
54 41 50 51 53 mp3an P:03VP2V
55 44 49 54 3jca P:03VP0VP1VP2V
56 39 55 syl6bi F=3P:0FVP0VP1VP2V
57 56 com12 P:0FVF=3P0VP1VP2V
58 4 37 57 3syl FPathsGPF=3P0VP1VP2V
59 58 adantr FPathsGPP0=P3F=3P0VP1VP2V
60 59 adantr FPathsGPP0=P3P0P1EP1P2EP2P3EF=3P0VP1VP2V
61 60 impcom F=3FPathsGPP0=P3P0P1EP1P2EP2P3EP0VP1VP2V
62 preq2 P3=P0P2P3=P2P0
63 62 eqcoms P0=P3P2P3=P2P0
64 63 adantl FPathsGPP0=P3P2P3=P2P0
65 64 eleq1d FPathsGPP0=P3P2P3EP2P0E
66 65 3anbi3d FPathsGPP0=P3P0P1EP1P2EP2P3EP0P1EP1P2EP2P0E
67 66 biimpa FPathsGPP0=P3P0P1EP1P2EP2P3EP0P1EP1P2EP2P0E
68 67 adantl F=3FPathsGPP0=P3P0P1EP1P2EP2P3EP0P1EP1P2EP2P0E
69 simpll FPathsGPP0=P3F=3FPathsGP
70 breq2 F=31<F1<3
71 46 70 mpbiri F=31<F
72 71 adantl FPathsGPP0=P3F=31<F
73 3nn 3
74 lbfzo0 00..^33
75 73 74 mpbir 00..^3
76 75 9 eleqtrrid F=300..^F
77 76 adantl FPathsGPP0=P3F=300..^F
78 pthdadjvtx FPathsGP1<F00..^FP0P0+1
79 1e0p1 1=0+1
80 79 fveq2i P1=P0+1
81 80 neeq2i P0P1P0P0+1
82 78 81 sylibr FPathsGP1<F00..^FP0P1
83 69 72 77 82 syl3anc FPathsGPP0=P3F=3P0P1
84 elfzo0 10..^31031<3
85 45 73 46 84 mpbir3an 10..^3
86 85 9 eleqtrrid F=310..^F
87 86 adantl FPathsGPP0=P3F=310..^F
88 pthdadjvtx FPathsGP1<F10..^FP1P1+1
89 df-2 2=1+1
90 89 fveq2i P2=P1+1
91 90 neeq2i P1P2P1P1+1
92 88 91 sylibr FPathsGP1<F10..^FP1P2
93 69 72 87 92 syl3anc FPathsGPP0=P3F=3P1P2
94 elfzo0 20..^32032<3
95 50 73 51 94 mpbir3an 20..^3
96 95 9 eleqtrrid F=320..^F
97 96 adantl FPathsGPP0=P3F=320..^F
98 pthdadjvtx FPathsGP1<F20..^FP2P2+1
99 69 72 97 98 syl3anc FPathsGPP0=P3F=3P2P2+1
100 neeq2 P0=P3P2P0P2P3
101 df-3 3=2+1
102 101 fveq2i P3=P2+1
103 102 neeq2i P2P3P2P2+1
104 100 103 bitrdi P0=P3P2P0P2P2+1
105 104 adantl FPathsGPP0=P3P2P0P2P2+1
106 105 adantr FPathsGPP0=P3F=3P2P0P2P2+1
107 99 106 mpbird FPathsGPP0=P3F=3P2P0
108 83 93 107 3jca FPathsGPP0=P3F=3P0P1P1P2P2P0
109 108 ex FPathsGPP0=P3F=3P0P1P1P2P2P0
110 109 adantr FPathsGPP0=P3P0P1EP1P2EP2P3EF=3P0P1P1P2P2P0
111 110 impcom F=3FPathsGPP0=P3P0P1EP1P2EP2P3EP0P1P1P2P2P0
112 preq1 a=P0ab=P0b
113 112 eleq1d a=P0abEP0bE
114 preq2 a=P0ca=cP0
115 114 eleq1d a=P0caEcP0E
116 113 115 3anbi13d a=P0abEbcEcaEP0bEbcEcP0E
117 neeq1 a=P0abP0b
118 neeq2 a=P0cacP0
119 117 118 3anbi13d a=P0abbccaP0bbccP0
120 116 119 anbi12d a=P0abEbcEcaEabbccaP0bEbcEcP0EP0bbccP0
121 preq2 b=P1P0b=P0P1
122 121 eleq1d b=P1P0bEP0P1E
123 preq1 b=P1bc=P1c
124 123 eleq1d b=P1bcEP1cE
125 122 124 3anbi12d b=P1P0bEbcEcP0EP0P1EP1cEcP0E
126 neeq2 b=P1P0bP0P1
127 neeq1 b=P1bcP1c
128 126 127 3anbi12d b=P1P0bbccP0P0P1P1ccP0
129 125 128 anbi12d b=P1P0bEbcEcP0EP0bbccP0P0P1EP1cEcP0EP0P1P1ccP0
130 preq2 c=P2P1c=P1P2
131 130 eleq1d c=P2P1cEP1P2E
132 preq1 c=P2cP0=P2P0
133 132 eleq1d c=P2cP0EP2P0E
134 131 133 3anbi23d c=P2P0P1EP1cEcP0EP0P1EP1P2EP2P0E
135 neeq2 c=P2P1cP1P2
136 neeq1 c=P2cP0P2P0
137 135 136 3anbi23d c=P2P0P1P1ccP0P0P1P1P2P2P0
138 134 137 anbi12d c=P2P0P1EP1cEcP0EP0P1P1ccP0P0P1EP1P2EP2P0EP0P1P1P2P2P0
139 120 129 138 rspc3ev P0VP1VP2VP0P1EP1P2EP2P0EP0P1P1P2P2P0aVbVcVabEbcEcaEabbcca
140 61 68 111 139 syl12anc F=3FPathsGPP0=P3P0P1EP1P2EP2P3EaVbVcVabEbcEcaEabbcca
141 140 ex F=3FPathsGPP0=P3P0P1EP1P2EP2P3EaVbVcVabEbcEcaEabbcca
142 36 141 sylbid F=3FPathsGPP0=PFk0..^FPkPk+1EaVbVcVabEbcEcaEabbcca
143 142 expd F=3FPathsGPP0=PFk0..^FPkPk+1EaVbVcVabEbcEcaEabbcca
144 143 com13 k0..^FPkPk+1EFPathsGPP0=PFF=3aVbVcVabEbcEcaEabbcca
145 5 144 syl GUPGraphFWalksGPFPathsGPP0=PFF=3aVbVcVabEbcEcaEabbcca
146 145 expcom FWalksGPGUPGraphFPathsGPP0=PFF=3aVbVcVabEbcEcaEabbcca
147 146 com23 FWalksGPFPathsGPP0=PFGUPGraphF=3aVbVcVabEbcEcaEabbcca
148 147 expd FWalksGPFPathsGPP0=PFGUPGraphF=3aVbVcVabEbcEcaEabbcca
149 4 148 mpcom FPathsGPP0=PFGUPGraphF=3aVbVcVabEbcEcaEabbcca
150 149 imp FPathsGPP0=PFGUPGraphF=3aVbVcVabEbcEcaEabbcca
151 3 150 syl FCyclesGPGUPGraphF=3aVbVcVabEbcEcaEabbcca
152 151 3imp21 GUPGraphFCyclesGPF=3aVbVcVabEbcEcaEabbcca