Metamath Proof Explorer


Theorem upgr4cycl4dv4e

Description: If there is a cycle of length 4 in a pseudograph, there are four (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017) (Revised by AV, 13-Feb-2021)

Ref Expression
Hypotheses upgr4cycl4dv4e.v V = Vtx G
upgr4cycl4dv4e.e E = Edg G
Assertion upgr4cycl4dv4e G UPGraph F Cycles G P F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d

Proof

Step Hyp Ref Expression
1 upgr4cycl4dv4e.v V = Vtx G
2 upgr4cycl4dv4e.e E = Edg G
3 cyclprop F Cycles G P F Paths G P P 0 = P F
4 pthiswlk F Paths G P F Walks G P
5 2 upgrwlkvtxedg G UPGraph F Walks G P k 0 ..^ F P k P k + 1 E
6 fveq2 F = 4 P F = P 4
7 6 eqeq2d F = 4 P 0 = P F P 0 = P 4
8 7 anbi2d F = 4 F Paths G P P 0 = P F F Paths G P P 0 = P 4
9 oveq2 F = 4 0 ..^ F = 0 ..^ 4
10 fzo0to42pr 0 ..^ 4 = 0 1 2 3
11 9 10 eqtrdi F = 4 0 ..^ F = 0 1 2 3
12 11 raleqdv F = 4 k 0 ..^ F P k P k + 1 E k 0 1 2 3 P k P k + 1 E
13 ralunb k 0 1 2 3 P k P k + 1 E k 0 1 P k P k + 1 E k 2 3 P k P k + 1 E
14 c0ex 0 V
15 1ex 1 V
16 fveq2 k = 0 P k = P 0
17 fv0p1e1 k = 0 P k + 1 = P 1
18 16 17 preq12d k = 0 P k P k + 1 = P 0 P 1
19 18 eleq1d k = 0 P k P k + 1 E P 0 P 1 E
20 fveq2 k = 1 P k = P 1
21 oveq1 k = 1 k + 1 = 1 + 1
22 1p1e2 1 + 1 = 2
23 21 22 eqtrdi k = 1 k + 1 = 2
24 23 fveq2d k = 1 P k + 1 = P 2
25 20 24 preq12d k = 1 P k P k + 1 = P 1 P 2
26 25 eleq1d k = 1 P k P k + 1 E P 1 P 2 E
27 14 15 19 26 ralpr k 0 1 P k P k + 1 E P 0 P 1 E P 1 P 2 E
28 2ex 2 V
29 3ex 3 V
30 fveq2 k = 2 P k = P 2
31 oveq1 k = 2 k + 1 = 2 + 1
32 2p1e3 2 + 1 = 3
33 31 32 eqtrdi k = 2 k + 1 = 3
34 33 fveq2d k = 2 P k + 1 = P 3
35 30 34 preq12d k = 2 P k P k + 1 = P 2 P 3
36 35 eleq1d k = 2 P k P k + 1 E P 2 P 3 E
37 fveq2 k = 3 P k = P 3
38 oveq1 k = 3 k + 1 = 3 + 1
39 3p1e4 3 + 1 = 4
40 38 39 eqtrdi k = 3 k + 1 = 4
41 40 fveq2d k = 3 P k + 1 = P 4
42 37 41 preq12d k = 3 P k P k + 1 = P 3 P 4
43 42 eleq1d k = 3 P k P k + 1 E P 3 P 4 E
44 28 29 36 43 ralpr k 2 3 P k P k + 1 E P 2 P 3 E P 3 P 4 E
45 27 44 anbi12i k 0 1 P k P k + 1 E k 2 3 P k P k + 1 E P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E
46 13 45 bitri k 0 1 2 3 P k P k + 1 E P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E
47 12 46 bitrdi F = 4 k 0 ..^ F P k P k + 1 E P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E
48 8 47 anbi12d F = 4 F Paths G P P 0 = P F k 0 ..^ F P k P k + 1 E F Paths G P P 0 = P 4 P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E
49 preq2 P 4 = P 0 P 3 P 4 = P 3 P 0
50 49 eleq1d P 4 = P 0 P 3 P 4 E P 3 P 0 E
51 50 eqcoms P 0 = P 4 P 3 P 4 E P 3 P 0 E
52 51 anbi2d P 0 = P 4 P 2 P 3 E P 3 P 4 E P 2 P 3 E P 3 P 0 E
53 52 anbi2d P 0 = P 4 P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E
54 53 adantl F = 4 F Paths G P P 0 = P 4 P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E
55 4nn0 4 0
56 55 a1i F = 4 F Paths G P 4 0
57 1 wlkp F Walks G P P : 0 F V
58 oveq2 F = 4 0 F = 0 4
59 58 feq2d F = 4 P : 0 F V P : 0 4 V
60 59 biimpcd P : 0 F V F = 4 P : 0 4 V
61 4 57 60 3syl F Paths G P F = 4 P : 0 4 V
62 61 impcom F = 4 F Paths G P P : 0 4 V
63 id 4 0 4 0
64 0nn0 0 0
65 64 a1i 4 0 0 0
66 4pos 0 < 4
67 66 a1i 4 0 0 < 4
68 63 65 67 3jca 4 0 4 0 0 0 0 < 4
69 fvffz0 4 0 0 0 0 < 4 P : 0 4 V P 0 V
70 68 69 sylan 4 0 P : 0 4 V P 0 V
71 70 ad2antlr F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 V
72 1nn0 1 0
73 72 a1i 4 0 1 0
74 1lt4 1 < 4
75 74 a1i 4 0 1 < 4
76 63 73 75 3jca 4 0 4 0 1 0 1 < 4
77 fvffz0 4 0 1 0 1 < 4 P : 0 4 V P 1 V
78 76 77 sylan 4 0 P : 0 4 V P 1 V
79 78 ad2antlr F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 1 V
80 2nn0 2 0
81 80 a1i 4 0 2 0
82 2lt4 2 < 4
83 82 a1i 4 0 2 < 4
84 63 81 83 3jca 4 0 4 0 2 0 2 < 4
85 fvffz0 4 0 2 0 2 < 4 P : 0 4 V P 2 V
86 84 85 sylan 4 0 P : 0 4 V P 2 V
87 86 ad2antlr F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 2 V
88 3nn0 3 0
89 88 a1i 4 0 3 0
90 3lt4 3 < 4
91 90 a1i 4 0 3 < 4
92 63 89 91 3jca 4 0 4 0 3 0 3 < 4
93 fvffz0 4 0 3 0 3 < 4 P : 0 4 V P 3 V
94 92 93 sylan 4 0 P : 0 4 V P 3 V
95 94 ad2antlr F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 3 V
96 simpr F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E
97 simplr F = 4 F Paths G P 4 0 P : 0 4 V F Paths G P
98 breq2 F = 4 1 < F 1 < 4
99 74 98 mpbiri F = 4 1 < F
100 99 ad2antrr F = 4 F Paths G P 4 0 P : 0 4 V 1 < F
101 simpll F = 4 F Paths G P 4 0 P : 0 4 V F = 4
102 9 ad2antrr F = 4 F Paths G P 4 0 P : 0 4 V 0 ..^ F = 0 ..^ 4
103 4nn 4
104 lbfzo0 0 0 ..^ 4 4
105 103 104 mpbir 0 0 ..^ 4
106 eleq2 0 ..^ F = 0 ..^ 4 0 0 ..^ F 0 0 ..^ 4
107 105 106 mpbiri 0 ..^ F = 0 ..^ 4 0 0 ..^ F
108 107 adantl F = 4 0 ..^ F = 0 ..^ 4 0 0 ..^ F
109 pthdadjvtx F Paths G P 1 < F 0 0 ..^ F P 0 P 0 + 1
110 108 109 syl3an3 F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 0 P 0 + 1
111 1e0p1 1 = 0 + 1
112 111 fveq2i P 1 = P 0 + 1
113 112 neeq2i P 0 P 1 P 0 P 0 + 1
114 110 113 sylibr F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 0 P 1
115 simp1 F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 F Paths G P
116 elfzo0 2 0 ..^ 4 2 0 4 2 < 4
117 80 103 82 116 mpbir3an 2 0 ..^ 4
118 2ne0 2 0
119 fzo1fzo0n0 2 1 ..^ 4 2 0 ..^ 4 2 0
120 117 118 119 mpbir2an 2 1 ..^ 4
121 oveq2 F = 4 1 ..^ F = 1 ..^ 4
122 120 121 eleqtrrid F = 4 2 1 ..^ F
123 0elfz 4 0 0 0 4
124 55 123 ax-mp 0 0 4
125 124 58 eleqtrrid F = 4 0 0 F
126 118 a1i F = 4 2 0
127 122 125 126 3jca F = 4 2 1 ..^ F 0 0 F 2 0
128 127 adantr F = 4 0 ..^ F = 0 ..^ 4 2 1 ..^ F 0 0 F 2 0
129 128 3ad2ant3 F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 2 1 ..^ F 0 0 F 2 0
130 pthdivtx F Paths G P 2 1 ..^ F 0 0 F 2 0 P 2 P 0
131 115 129 130 syl2anc F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 2 P 0
132 131 necomd F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 0 P 2
133 elfzo0 3 0 ..^ 4 3 0 4 3 < 4
134 88 103 90 133 mpbir3an 3 0 ..^ 4
135 3ne0 3 0
136 fzo1fzo0n0 3 1 ..^ 4 3 0 ..^ 4 3 0
137 134 135 136 mpbir2an 3 1 ..^ 4
138 137 121 eleqtrrid F = 4 3 1 ..^ F
139 135 a1i F = 4 3 0
140 138 125 139 3jca F = 4 3 1 ..^ F 0 0 F 3 0
141 140 adantr F = 4 0 ..^ F = 0 ..^ 4 3 1 ..^ F 0 0 F 3 0
142 141 3ad2ant3 F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 3 1 ..^ F 0 0 F 3 0
143 pthdivtx F Paths G P 3 1 ..^ F 0 0 F 3 0 P 3 P 0
144 115 142 143 syl2anc F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 3 P 0
145 144 necomd F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 0 P 3
146 114 132 145 3jca F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 0 P 1 P 0 P 2 P 0 P 3
147 elfzo0 1 0 ..^ 4 1 0 4 1 < 4
148 72 103 74 147 mpbir3an 1 0 ..^ 4
149 eleq2 0 ..^ F = 0 ..^ 4 1 0 ..^ F 1 0 ..^ 4
150 148 149 mpbiri 0 ..^ F = 0 ..^ 4 1 0 ..^ F
151 150 adantl F = 4 0 ..^ F = 0 ..^ 4 1 0 ..^ F
152 pthdadjvtx F Paths G P 1 < F 1 0 ..^ F P 1 P 1 + 1
153 151 152 syl3an3 F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 1 P 1 + 1
154 df-2 2 = 1 + 1
155 154 fveq2i P 2 = P 1 + 1
156 155 neeq2i P 1 P 2 P 1 P 1 + 1
157 153 156 sylibr F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 1 P 2
158 ax-1ne0 1 0
159 fzo1fzo0n0 1 1 ..^ 4 1 0 ..^ 4 1 0
160 148 158 159 mpbir2an 1 1 ..^ 4
161 160 121 eleqtrrid F = 4 1 1 ..^ F
162 3re 3
163 4re 4
164 162 163 90 ltleii 3 4
165 elfz2nn0 3 0 4 3 0 4 0 3 4
166 88 55 164 165 mpbir3an 3 0 4
167 166 58 eleqtrrid F = 4 3 0 F
168 1re 1
169 1lt3 1 < 3
170 168 169 ltneii 1 3
171 170 a1i F = 4 1 3
172 161 167 171 3jca F = 4 1 1 ..^ F 3 0 F 1 3
173 172 adantr F = 4 0 ..^ F = 0 ..^ 4 1 1 ..^ F 3 0 F 1 3
174 173 3ad2ant3 F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 1 1 ..^ F 3 0 F 1 3
175 pthdivtx F Paths G P 1 1 ..^ F 3 0 F 1 3 P 1 P 3
176 115 174 175 syl2anc F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 1 P 3
177 eleq2 0 ..^ F = 0 ..^ 4 2 0 ..^ F 2 0 ..^ 4
178 117 177 mpbiri 0 ..^ F = 0 ..^ 4 2 0 ..^ F
179 178 adantl F = 4 0 ..^ F = 0 ..^ 4 2 0 ..^ F
180 pthdadjvtx F Paths G P 1 < F 2 0 ..^ F P 2 P 2 + 1
181 179 180 syl3an3 F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 2 P 2 + 1
182 df-3 3 = 2 + 1
183 182 fveq2i P 3 = P 2 + 1
184 183 neeq2i P 2 P 3 P 2 P 2 + 1
185 181 184 sylibr F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 2 P 3
186 157 176 185 3jca F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 1 P 2 P 1 P 3 P 2 P 3
187 146 186 jca F Paths G P 1 < F F = 4 0 ..^ F = 0 ..^ 4 P 0 P 1 P 0 P 2 P 0 P 3 P 1 P 2 P 1 P 3 P 2 P 3
188 97 100 101 102 187 syl112anc F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 P 0 P 2 P 0 P 3 P 1 P 2 P 1 P 3 P 2 P 3
189 188 adantr F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 P 1 P 0 P 2 P 0 P 3 P 1 P 2 P 1 P 3 P 2 P 3
190 preq2 c = P 2 P 1 c = P 1 P 2
191 190 eleq1d c = P 2 P 1 c E P 1 P 2 E
192 191 anbi2d c = P 2 P 0 P 1 E P 1 c E P 0 P 1 E P 1 P 2 E
193 preq1 c = P 2 c d = P 2 d
194 193 eleq1d c = P 2 c d E P 2 d E
195 194 anbi1d c = P 2 c d E d P 0 E P 2 d E d P 0 E
196 192 195 anbi12d c = P 2 P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 E P 1 P 2 E P 2 d E d P 0 E
197 neeq2 c = P 2 P 0 c P 0 P 2
198 197 3anbi2d c = P 2 P 0 P 1 P 0 c P 0 d P 0 P 1 P 0 P 2 P 0 d
199 neeq2 c = P 2 P 1 c P 1 P 2
200 neeq1 c = P 2 c d P 2 d
201 199 200 3anbi13d c = P 2 P 1 c P 1 d c d P 1 P 2 P 1 d P 2 d
202 198 201 anbi12d c = P 2 P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d P 0 P 1 P 0 P 2 P 0 d P 1 P 2 P 1 d P 2 d
203 196 202 anbi12d c = P 2 P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d P 0 P 1 E P 1 P 2 E P 2 d E d P 0 E P 0 P 1 P 0 P 2 P 0 d P 1 P 2 P 1 d P 2 d
204 preq2 d = P 3 P 2 d = P 2 P 3
205 204 eleq1d d = P 3 P 2 d E P 2 P 3 E
206 preq1 d = P 3 d P 0 = P 3 P 0
207 206 eleq1d d = P 3 d P 0 E P 3 P 0 E
208 205 207 anbi12d d = P 3 P 2 d E d P 0 E P 2 P 3 E P 3 P 0 E
209 208 anbi2d d = P 3 P 0 P 1 E P 1 P 2 E P 2 d E d P 0 E P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E
210 neeq2 d = P 3 P 0 d P 0 P 3
211 210 3anbi3d d = P 3 P 0 P 1 P 0 P 2 P 0 d P 0 P 1 P 0 P 2 P 0 P 3
212 neeq2 d = P 3 P 1 d P 1 P 3
213 neeq2 d = P 3 P 2 d P 2 P 3
214 212 213 3anbi23d d = P 3 P 1 P 2 P 1 d P 2 d P 1 P 2 P 1 P 3 P 2 P 3
215 211 214 anbi12d d = P 3 P 0 P 1 P 0 P 2 P 0 d P 1 P 2 P 1 d P 2 d P 0 P 1 P 0 P 2 P 0 P 3 P 1 P 2 P 1 P 3 P 2 P 3
216 209 215 anbi12d d = P 3 P 0 P 1 E P 1 P 2 E P 2 d E d P 0 E P 0 P 1 P 0 P 2 P 0 d P 1 P 2 P 1 d P 2 d P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 P 1 P 0 P 2 P 0 P 3 P 1 P 2 P 1 P 3 P 2 P 3
217 203 216 rspc2ev P 2 V P 3 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 P 1 P 0 P 2 P 0 P 3 P 1 P 2 P 1 P 3 P 2 P 3 c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
218 87 95 96 189 217 syl112anc F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
219 71 79 218 3jca F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 V P 1 V c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
220 219 exp31 F = 4 F Paths G P 4 0 P : 0 4 V P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 V P 1 V c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
221 56 62 220 mp2and F = 4 F Paths G P P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 V P 1 V c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
222 221 adantr F = 4 F Paths G P P 0 = P 4 P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 0 E P 0 V P 1 V c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
223 54 222 sylbid F = 4 F Paths G P P 0 = P 4 P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E P 0 V P 1 V c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
224 223 exp31 F = 4 F Paths G P P 0 = P 4 P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E P 0 V P 1 V c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
225 224 imp4c F = 4 F Paths G P P 0 = P 4 P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E P 0 V P 1 V c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
226 preq1 a = P 0 a b = P 0 b
227 226 eleq1d a = P 0 a b E P 0 b E
228 227 anbi1d a = P 0 a b E b c E P 0 b E b c E
229 preq2 a = P 0 d a = d P 0
230 229 eleq1d a = P 0 d a E d P 0 E
231 230 anbi2d a = P 0 c d E d a E c d E d P 0 E
232 228 231 anbi12d a = P 0 a b E b c E c d E d a E P 0 b E b c E c d E d P 0 E
233 neeq1 a = P 0 a b P 0 b
234 neeq1 a = P 0 a c P 0 c
235 neeq1 a = P 0 a d P 0 d
236 233 234 235 3anbi123d a = P 0 a b a c a d P 0 b P 0 c P 0 d
237 236 anbi1d a = P 0 a b a c a d b c b d c d P 0 b P 0 c P 0 d b c b d c d
238 232 237 anbi12d a = P 0 a b E b c E c d E d a E a b a c a d b c b d c d P 0 b E b c E c d E d P 0 E P 0 b P 0 c P 0 d b c b d c d
239 238 2rexbidv a = P 0 c V d V a b E b c E c d E d a E a b a c a d b c b d c d c V d V P 0 b E b c E c d E d P 0 E P 0 b P 0 c P 0 d b c b d c d
240 preq2 b = P 1 P 0 b = P 0 P 1
241 240 eleq1d b = P 1 P 0 b E P 0 P 1 E
242 preq1 b = P 1 b c = P 1 c
243 242 eleq1d b = P 1 b c E P 1 c E
244 241 243 anbi12d b = P 1 P 0 b E b c E P 0 P 1 E P 1 c E
245 244 anbi1d b = P 1 P 0 b E b c E c d E d P 0 E P 0 P 1 E P 1 c E c d E d P 0 E
246 neeq2 b = P 1 P 0 b P 0 P 1
247 246 3anbi1d b = P 1 P 0 b P 0 c P 0 d P 0 P 1 P 0 c P 0 d
248 neeq1 b = P 1 b c P 1 c
249 neeq1 b = P 1 b d P 1 d
250 248 249 3anbi12d b = P 1 b c b d c d P 1 c P 1 d c d
251 247 250 anbi12d b = P 1 P 0 b P 0 c P 0 d b c b d c d P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
252 245 251 anbi12d b = P 1 P 0 b E b c E c d E d P 0 E P 0 b P 0 c P 0 d b c b d c d P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
253 252 2rexbidv b = P 1 c V d V P 0 b E b c E c d E d P 0 E P 0 b P 0 c P 0 d b c b d c d c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d
254 239 253 rspc2ev P 0 V P 1 V c V d V P 0 P 1 E P 1 c E c d E d P 0 E P 0 P 1 P 0 c P 0 d P 1 c P 1 d c d a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
255 225 254 syl6 F = 4 F Paths G P P 0 = P 4 P 0 P 1 E P 1 P 2 E P 2 P 3 E P 3 P 4 E a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
256 48 255 sylbid F = 4 F Paths G P P 0 = P F k 0 ..^ F P k P k + 1 E a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
257 256 expd F = 4 F Paths G P P 0 = P F k 0 ..^ F P k P k + 1 E a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
258 257 com13 k 0 ..^ F P k P k + 1 E F Paths G P P 0 = P F F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
259 5 258 syl G UPGraph F Walks G P F Paths G P P 0 = P F F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
260 259 expcom F Walks G P G UPGraph F Paths G P P 0 = P F F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
261 260 com23 F Walks G P F Paths G P P 0 = P F G UPGraph F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
262 261 expd F Walks G P F Paths G P P 0 = P F G UPGraph F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
263 4 262 mpcom F Paths G P P 0 = P F G UPGraph F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
264 263 imp F Paths G P P 0 = P F G UPGraph F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
265 3 264 syl F Cycles G P G UPGraph F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d
266 265 3imp21 G UPGraph F Cycles G P F = 4 a V b V c V d V a b E b c E c d E d a E a b a c a d b c b d c d