Metamath Proof Explorer


Theorem upgrbi

Description: Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 28-Feb-2021)

Ref Expression
Hypotheses upgrbi.x X V
upgrbi.y Y V
Assertion upgrbi X Y x 𝒫 V | x 2

Proof

Step Hyp Ref Expression
1 upgrbi.x X V
2 upgrbi.y Y V
3 prssi X V Y V X Y V
4 1 2 3 mp2an X Y V
5 prex X Y V
6 5 elpw X Y 𝒫 V X Y V
7 4 6 mpbir X Y 𝒫 V
8 1 elexi X V
9 8 prnz X Y
10 eldifsn X Y 𝒫 V X Y 𝒫 V X Y
11 7 9 10 mpbir2an X Y 𝒫 V
12 hashprlei X Y Fin X Y 2
13 12 simpri X Y 2
14 fveq2 x = X Y x = X Y
15 14 breq1d x = X Y x 2 X Y 2
16 15 elrab X Y x 𝒫 V | x 2 X Y 𝒫 V X Y 2
17 11 13 16 mpbir2an X Y x 𝒫 V | x 2