Metamath Proof Explorer


Theorem upgredginwlk

Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021)

Ref Expression
Hypotheses edginwlk.i I = iEdg G
edginwlk.e E = Edg G
Assertion upgredginwlk G UPGraph F Word dom I K 0 ..^ F I F K E

Proof

Step Hyp Ref Expression
1 edginwlk.i I = iEdg G
2 edginwlk.e E = Edg G
3 upgruhgr G UPGraph G UHGraph
4 1 uhgrfun G UHGraph Fun I
5 3 4 syl G UPGraph Fun I
6 1 2 edginwlk Fun I F Word dom I K 0 ..^ F I F K E
7 6 3expia Fun I F Word dom I K 0 ..^ F I F K E
8 5 7 sylan G UPGraph F Word dom I K 0 ..^ F I F K E