Metamath Proof Explorer


Theorem upgreupthi

Description: Properties of an Eulerian path in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses eupths.i I = iEdg G
upgriseupth.v V = Vtx G
Assertion upgreupthi G UPGraph F EulerPaths G P F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1

Proof

Step Hyp Ref Expression
1 eupths.i I = iEdg G
2 upgriseupth.v V = Vtx G
3 1 2 upgriseupth G UPGraph F EulerPaths G P F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
4 3 biimpa G UPGraph F EulerPaths G P F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1