Metamath Proof Explorer


Theorem upgrewlkle2

Description: In a pseudograph, there is no s-walk of edges of length greater than 1 with s>2. (Contributed by AV, 4-Jan-2021)

Ref Expression
Assertion upgrewlkle2 G UPGraph F G EdgWalks S 1 < F S 2

Proof

Step Hyp Ref Expression
1 eqid iEdg G = iEdg G
2 1 ewlkprop F G EdgWalks S G V S 0 * F Word dom iEdg G k 1 ..^ F S iEdg G F k 1 iEdg G F k
3 fvex iEdg G F k 1 V
4 hashin iEdg G F k 1 V iEdg G F k 1 iEdg G F k iEdg G F k 1
5 3 4 ax-mp iEdg G F k 1 iEdg G F k iEdg G F k 1
6 simpl3 G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F G UPGraph
7 upgruhgr G UPGraph G UHGraph
8 1 uhgrfun G UHGraph Fun iEdg G
9 7 8 syl G UPGraph Fun iEdg G
10 9 funfnd G UPGraph iEdg G Fn dom iEdg G
11 10 3ad2ant3 G V S 0 * F Word dom iEdg G G UPGraph iEdg G Fn dom iEdg G
12 11 adantr G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F iEdg G Fn dom iEdg G
13 elfzofz k 1 ..^ F k 1 F
14 fz1fzo0m1 k 1 F k 1 0 ..^ F
15 13 14 syl k 1 ..^ F k 1 0 ..^ F
16 wrdsymbcl F Word dom iEdg G k 1 0 ..^ F F k 1 dom iEdg G
17 15 16 sylan2 F Word dom iEdg G k 1 ..^ F F k 1 dom iEdg G
18 17 3ad2antl2 G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F F k 1 dom iEdg G
19 eqid Vtx G = Vtx G
20 19 1 upgrle G UPGraph iEdg G Fn dom iEdg G F k 1 dom iEdg G iEdg G F k 1 2
21 6 12 18 20 syl3anc G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F iEdg G F k 1 2
22 3 inex1 iEdg G F k 1 iEdg G F k V
23 hashxrcl iEdg G F k 1 iEdg G F k V iEdg G F k 1 iEdg G F k *
24 22 23 ax-mp iEdg G F k 1 iEdg G F k *
25 hashxrcl iEdg G F k 1 V iEdg G F k 1 *
26 3 25 ax-mp iEdg G F k 1 *
27 2re 2
28 27 rexri 2 *
29 24 26 28 3pm3.2i iEdg G F k 1 iEdg G F k * iEdg G F k 1 * 2 *
30 29 a1i G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F iEdg G F k 1 iEdg G F k * iEdg G F k 1 * 2 *
31 xrletr iEdg G F k 1 iEdg G F k * iEdg G F k 1 * 2 * iEdg G F k 1 iEdg G F k iEdg G F k 1 iEdg G F k 1 2 iEdg G F k 1 iEdg G F k 2
32 30 31 syl G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F iEdg G F k 1 iEdg G F k iEdg G F k 1 iEdg G F k 1 2 iEdg G F k 1 iEdg G F k 2
33 21 32 mpan2d G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F iEdg G F k 1 iEdg G F k iEdg G F k 1 iEdg G F k 1 iEdg G F k 2
34 5 33 mpi G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F iEdg G F k 1 iEdg G F k 2
35 xnn0xr S 0 * S *
36 24 a1i S 0 * iEdg G F k 1 iEdg G F k *
37 28 a1i S 0 * 2 *
38 xrletr S * iEdg G F k 1 iEdg G F k * 2 * S iEdg G F k 1 iEdg G F k iEdg G F k 1 iEdg G F k 2 S 2
39 35 36 37 38 syl3anc S 0 * S iEdg G F k 1 iEdg G F k iEdg G F k 1 iEdg G F k 2 S 2
40 39 expcomd S 0 * iEdg G F k 1 iEdg G F k 2 S iEdg G F k 1 iEdg G F k S 2
41 40 adantl G V S 0 * iEdg G F k 1 iEdg G F k 2 S iEdg G F k 1 iEdg G F k S 2
42 41 3ad2ant1 G V S 0 * F Word dom iEdg G G UPGraph iEdg G F k 1 iEdg G F k 2 S iEdg G F k 1 iEdg G F k S 2
43 42 adantr G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F iEdg G F k 1 iEdg G F k 2 S iEdg G F k 1 iEdg G F k S 2
44 34 43 mpd G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F S iEdg G F k 1 iEdg G F k S 2
45 44 ralimdva G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F S iEdg G F k 1 iEdg G F k k 1 ..^ F S 2
46 45 3exp G V S 0 * F Word dom iEdg G G UPGraph k 1 ..^ F S iEdg G F k 1 iEdg G F k k 1 ..^ F S 2
47 46 com34 G V S 0 * F Word dom iEdg G k 1 ..^ F S iEdg G F k 1 iEdg G F k G UPGraph k 1 ..^ F S 2
48 47 3imp G V S 0 * F Word dom iEdg G k 1 ..^ F S iEdg G F k 1 iEdg G F k G UPGraph k 1 ..^ F S 2
49 lencl F Word dom iEdg G F 0
50 1zzd F 0 1
51 nn0z F 0 F
52 fzon 1 F F 1 1 ..^ F =
53 50 51 52 syl2anc F 0 F 1 1 ..^ F =
54 nn0re F 0 F
55 1red F 0 1
56 54 55 lenltd F 0 F 1 ¬ 1 < F
57 53 56 bitr3d F 0 1 ..^ F = ¬ 1 < F
58 57 biimpd F 0 1 ..^ F = ¬ 1 < F
59 58 necon2ad F 0 1 < F 1 ..^ F
60 rspn0 1 ..^ F k 1 ..^ F S 2 S 2
61 59 60 syl6com 1 < F F 0 k 1 ..^ F S 2 S 2
62 61 com3l F 0 k 1 ..^ F S 2 1 < F S 2
63 49 62 syl F Word dom iEdg G k 1 ..^ F S 2 1 < F S 2
64 63 3ad2ant2 G V S 0 * F Word dom iEdg G k 1 ..^ F S iEdg G F k 1 iEdg G F k k 1 ..^ F S 2 1 < F S 2
65 48 64 syld G V S 0 * F Word dom iEdg G k 1 ..^ F S iEdg G F k 1 iEdg G F k G UPGraph 1 < F S 2
66 2 65 syl F G EdgWalks S G UPGraph 1 < F S 2
67 66 3imp21 G UPGraph F G EdgWalks S 1 < F S 2