Metamath Proof Explorer


Theorem upgrfi

Description: An edge is a finite subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 10-Oct-2020)

Ref Expression
Hypotheses isupgr.v V = Vtx G
isupgr.e E = iEdg G
Assertion upgrfi G UPGraph E Fn A F A E F Fin

Proof

Step Hyp Ref Expression
1 isupgr.v V = Vtx G
2 isupgr.e E = iEdg G
3 1 2 upgrle G UPGraph E Fn A F A E F 2
4 2re 2
5 ltpnf 2 2 < +∞
6 4 5 ax-mp 2 < +∞
7 4 rexri 2 *
8 pnfxr +∞ *
9 xrltnle 2 * +∞ * 2 < +∞ ¬ +∞ 2
10 7 8 9 mp2an 2 < +∞ ¬ +∞ 2
11 6 10 mpbi ¬ +∞ 2
12 fvex E F V
13 hashinf E F V ¬ E F Fin E F = +∞
14 12 13 mpan ¬ E F Fin E F = +∞
15 14 breq1d ¬ E F Fin E F 2 +∞ 2
16 11 15 mtbiri ¬ E F Fin ¬ E F 2
17 16 con4i E F 2 E F Fin
18 3 17 syl G UPGraph E Fn A F A E F Fin