Metamath Proof Explorer


Theorem upgriseupth

Description: The property " <. F , P >. is an Eulerian path on the pseudograph G ". (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 18-Feb-2021) (Revised by AV, 30-Oct-2021)

Ref Expression
Hypotheses eupths.i I = iEdg G
upgriseupth.v V = Vtx G
Assertion upgriseupth G UPGraph F EulerPaths G P F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1

Proof

Step Hyp Ref Expression
1 eupths.i I = iEdg G
2 upgriseupth.v V = Vtx G
3 1 iseupthf1o F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom I
4 3 a1i G UPGraph F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom I
5 2 1 upgriswlk G UPGraph F Walks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
6 5 anbi1d G UPGraph F Walks G P F : 0 ..^ F 1-1 onto dom I F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I
7 simpr F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I F : 0 ..^ F 1-1 onto dom I
8 simpl2 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I P : 0 F V
9 simpl3 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I k 0 ..^ F I F k = P k P k + 1
10 7 8 9 3jca F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
11 f1of F : 0 ..^ F 1-1 onto dom I F : 0 ..^ F dom I
12 iswrdi F : 0 ..^ F dom I F Word dom I
13 11 12 syl F : 0 ..^ F 1-1 onto dom I F Word dom I
14 13 3anim1i F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
15 simp1 F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I
16 14 15 jca F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I
17 10 16 impbii F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
18 17 a1i G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 onto dom I F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
19 4 6 18 3bitrd G UPGraph F EulerPaths G P F : 0 ..^ F 1-1 onto dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1