Metamath Proof Explorer


Theorem upgristrl

Description: Properties of a pair of functions to be a trail in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Hypotheses upgrtrls.v V=VtxG
upgrtrls.i I=iEdgG
Assertion upgristrl GUPGraphFTrailsGPFWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 upgrtrls.v V=VtxG
2 upgrtrls.i I=iEdgG
3 istrl FTrailsGPFWalksGPFunF-1
4 1 2 upgriswlk GUPGraphFWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1
5 4 anbi1d GUPGraphFWalksGPFunF-1FWorddomIP:0FVk0..^FIFk=PkPk+1FunF-1
6 an32 FWorddomIP:0FVk0..^FIFk=PkPk+1FunF-1FWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1
7 3anass FWorddomIP:0FVk0..^FIFk=PkPk+1FWorddomIP:0FVk0..^FIFk=PkPk+1
8 7 anbi1i FWorddomIP:0FVk0..^FIFk=PkPk+1FunF-1FWorddomIP:0FVk0..^FIFk=PkPk+1FunF-1
9 3anass FWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1FWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1
10 6 8 9 3bitr4i FWorddomIP:0FVk0..^FIFk=PkPk+1FunF-1FWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1
11 5 10 bitrdi GUPGraphFWalksGPFunF-1FWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1
12 3 11 bitrid GUPGraphFTrailsGPFWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1