Metamath Proof Explorer


Theorem upgristrl

Description: Properties of a pair of functions to be a trail in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Hypotheses upgrtrls.v V = Vtx G
upgrtrls.i I = iEdg G
Assertion upgristrl G UPGraph F Trails G P F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1

Proof

Step Hyp Ref Expression
1 upgrtrls.v V = Vtx G
2 upgrtrls.i I = iEdg G
3 istrl F Trails G P F Walks G P Fun F -1
4 1 2 upgriswlk G UPGraph F Walks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
5 4 anbi1d G UPGraph F Walks G P Fun F -1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 Fun F -1
6 an32 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 Fun F -1 F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1
7 3anass F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
8 7 anbi1i F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 Fun F -1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 Fun F -1
9 3anass F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1 F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1
10 6 8 9 3bitr4i F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 Fun F -1 F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1
11 5 10 bitrdi G UPGraph F Walks G P Fun F -1 F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1
12 3 11 syl5bb G UPGraph F Trails G P F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1