Metamath Proof Explorer


Theorem upgriswlk

Description: Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021) (Revised by AV, 28-Oct-2021)

Ref Expression
Hypotheses upgriswlk.v V = Vtx G
upgriswlk.i I = iEdg G
Assertion upgriswlk G UPGraph F Walks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1

Proof

Step Hyp Ref Expression
1 upgriswlk.v V = Vtx G
2 upgriswlk.i I = iEdg G
3 1 2 iswlkg G UPGraph F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
4 df-ifp if- P k = P k + 1 I F k = P k P k P k + 1 I F k P k = P k + 1 I F k = P k ¬ P k = P k + 1 P k P k + 1 I F k
5 dfsn2 P k = P k P k
6 preq2 P k = P k + 1 P k P k = P k P k + 1
7 5 6 syl5eq P k = P k + 1 P k = P k P k + 1
8 7 eqeq2d P k = P k + 1 I F k = P k I F k = P k P k + 1
9 8 biimpa P k = P k + 1 I F k = P k I F k = P k P k + 1
10 9 a1d P k = P k + 1 I F k = P k G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
11 eqid Edg G = Edg G
12 2 11 upgredginwlk G UPGraph F Word dom I k 0 ..^ F I F k Edg G
13 12 adantrr G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G
14 13 imp G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G
15 simp-4l G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G ¬ P k = P k + 1 P k P k + 1 I F k G UPGraph
16 simpr G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G I F k Edg G
17 16 adantr G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G ¬ P k = P k + 1 P k P k + 1 I F k I F k Edg G
18 simpr ¬ P k = P k + 1 P k P k + 1 I F k P k P k + 1 I F k
19 18 adantl G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G ¬ P k = P k + 1 P k P k + 1 I F k P k P k + 1 I F k
20 fvexd ¬ P k = P k + 1 P k V
21 fvexd ¬ P k = P k + 1 P k + 1 V
22 neqne ¬ P k = P k + 1 P k P k + 1
23 20 21 22 3jca ¬ P k = P k + 1 P k V P k + 1 V P k P k + 1
24 23 adantr ¬ P k = P k + 1 P k P k + 1 I F k P k V P k + 1 V P k P k + 1
25 24 adantl G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G ¬ P k = P k + 1 P k P k + 1 I F k P k V P k + 1 V P k P k + 1
26 1 11 upgredgpr G UPGraph I F k Edg G P k P k + 1 I F k P k V P k + 1 V P k P k + 1 P k P k + 1 = I F k
27 15 17 19 25 26 syl31anc G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G ¬ P k = P k + 1 P k P k + 1 I F k P k P k + 1 = I F k
28 27 eqcomd G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G ¬ P k = P k + 1 P k P k + 1 I F k I F k = P k P k + 1
29 28 exp31 G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k Edg G ¬ P k = P k + 1 P k P k + 1 I F k I F k = P k P k + 1
30 14 29 mpd G UPGraph F Word dom I P : 0 F V k 0 ..^ F ¬ P k = P k + 1 P k P k + 1 I F k I F k = P k P k + 1
31 30 com12 ¬ P k = P k + 1 P k P k + 1 I F k G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
32 10 31 jaoi P k = P k + 1 I F k = P k ¬ P k = P k + 1 P k P k + 1 I F k G UPGraph F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
33 32 com12 G UPGraph F Word dom I P : 0 F V k 0 ..^ F P k = P k + 1 I F k = P k ¬ P k = P k + 1 P k P k + 1 I F k I F k = P k P k + 1
34 4 33 syl5bi G UPGraph F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k I F k = P k P k + 1
35 ifpprsnss I F k = P k P k + 1 if- P k = P k + 1 I F k = P k P k P k + 1 I F k
36 34 35 impbid1 G UPGraph F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k I F k = P k P k + 1
37 36 ralbidva G UPGraph F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k k 0 ..^ F I F k = P k P k + 1
38 37 pm5.32da G UPGraph F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
39 df-3an F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
40 df-3an F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
41 38 39 40 3bitr4g G UPGraph F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
42 3 41 bitrd G UPGraph F Walks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1