Metamath Proof Explorer


Theorem upgrop

Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021)

Ref Expression
Assertion upgrop G UPGraph Vtx G iEdg G UPGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 upgrf G UPGraph iEdg G : dom iEdg G p 𝒫 Vtx G | p 2
4 fvex Vtx G V
5 fvex iEdg G V
6 4 5 pm3.2i Vtx G V iEdg G V
7 opex Vtx G iEdg G V
8 eqid Vtx Vtx G iEdg G = Vtx Vtx G iEdg G
9 eqid iEdg Vtx G iEdg G = iEdg Vtx G iEdg G
10 8 9 isupgr Vtx G iEdg G V Vtx G iEdg G UPGraph iEdg Vtx G iEdg G : dom iEdg Vtx G iEdg G p 𝒫 Vtx Vtx G iEdg G | p 2
11 7 10 mp1i Vtx G V iEdg G V Vtx G iEdg G UPGraph iEdg Vtx G iEdg G : dom iEdg Vtx G iEdg G p 𝒫 Vtx Vtx G iEdg G | p 2
12 opiedgfv Vtx G V iEdg G V iEdg Vtx G iEdg G = iEdg G
13 12 dmeqd Vtx G V iEdg G V dom iEdg Vtx G iEdg G = dom iEdg G
14 opvtxfv Vtx G V iEdg G V Vtx Vtx G iEdg G = Vtx G
15 14 pweqd Vtx G V iEdg G V 𝒫 Vtx Vtx G iEdg G = 𝒫 Vtx G
16 15 difeq1d Vtx G V iEdg G V 𝒫 Vtx Vtx G iEdg G = 𝒫 Vtx G
17 16 rabeqdv Vtx G V iEdg G V p 𝒫 Vtx Vtx G iEdg G | p 2 = p 𝒫 Vtx G | p 2
18 12 13 17 feq123d Vtx G V iEdg G V iEdg Vtx G iEdg G : dom iEdg Vtx G iEdg G p 𝒫 Vtx Vtx G iEdg G | p 2 iEdg G : dom iEdg G p 𝒫 Vtx G | p 2
19 11 18 bitrd Vtx G V iEdg G V Vtx G iEdg G UPGraph iEdg G : dom iEdg G p 𝒫 Vtx G | p 2
20 6 19 mp1i G UPGraph Vtx G iEdg G UPGraph iEdg G : dom iEdg G p 𝒫 Vtx G | p 2
21 3 20 mpbird G UPGraph Vtx G iEdg G UPGraph