Metamath Proof Explorer


Theorem upgrres1lem1

Description: Lemma 1 for upgrres1 . (Contributed by AV, 7-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V = Vtx G
upgrres1.e E = Edg G
upgrres1.f F = e E | N e
Assertion upgrres1lem1 V N V I F V

Proof

Step Hyp Ref Expression
1 upgrres1.v V = Vtx G
2 upgrres1.e E = Edg G
3 upgrres1.f F = e E | N e
4 1 fvexi V V
5 4 difexi V N V
6 2 fvexi E V
7 3 6 rabex2 F V
8 resiexg F V I F V
9 7 8 ax-mp I F V
10 5 9 pm3.2i V N V I F V