Metamath Proof Explorer


Theorem upgrres1lem2

Description: Lemma 2 for upgrres1 . (Contributed by AV, 7-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V = Vtx G
upgrres1.e E = Edg G
upgrres1.f F = e E | N e
upgrres1.s S = V N I F
Assertion upgrres1lem2 Vtx S = V N

Proof

Step Hyp Ref Expression
1 upgrres1.v V = Vtx G
2 upgrres1.e E = Edg G
3 upgrres1.f F = e E | N e
4 upgrres1.s S = V N I F
5 4 fveq2i Vtx S = Vtx V N I F
6 1 2 3 upgrres1lem1 V N V I F V
7 opvtxfv V N V I F V Vtx V N I F = V N
8 6 7 ax-mp Vtx V N I F = V N
9 5 8 eqtri Vtx S = V N