Database
GRAPH THEORY
Undirected graphs
Subgraphs
upgrres1lem3
Next ⟩
upgrres1
Metamath Proof Explorer
Ascii
Unicode
Theorem
upgrres1lem3
Description:
Lemma 3 for
upgrres1
.
(Contributed by
AV
, 7-Nov-2020)
Ref
Expression
Hypotheses
upgrres1.v
⊢
V
=
Vtx
⁡
G
upgrres1.e
⊢
E
=
Edg
⁡
G
upgrres1.f
⊢
F
=
e
∈
E
|
N
∉
e
upgrres1.s
⊢
S
=
V
∖
N
I
↾
F
Assertion
upgrres1lem3
⊢
iEdg
⁡
S
=
I
↾
F
Proof
Step
Hyp
Ref
Expression
1
upgrres1.v
⊢
V
=
Vtx
⁡
G
2
upgrres1.e
⊢
E
=
Edg
⁡
G
3
upgrres1.f
⊢
F
=
e
∈
E
|
N
∉
e
4
upgrres1.s
⊢
S
=
V
∖
N
I
↾
F
5
4
fveq2i
⊢
iEdg
⁡
S
=
iEdg
⁡
V
∖
N
I
↾
F
6
1
2
3
upgrres1lem1
⊢
V
∖
N
∈
V
∧
I
↾
F
∈
V
7
opiedgfv
⊢
V
∖
N
∈
V
∧
I
↾
F
∈
V
→
iEdg
⁡
V
∖
N
I
↾
F
=
I
↾
F
8
6
7
ax-mp
⊢
iEdg
⁡
V
∖
N
I
↾
F
=
I
↾
F
9
5
8
eqtri
⊢
iEdg
⁡
S
=
I
↾
F